
15-122: Principles of Imperative Computation Spring 2018

Lab 3: A bit more about Bits 23 January

Collaboration: In lab, we encourage collaboration and discussion as you work through the problems.

These activities, like recitation, are meant to get you to review what we've learned, look at problems from

a di�erent perspective and allow you to ask questions about topics you don't understand. We encourage

discussing problems with your neighbors as you work through this lab!

Two's complement

Because C0's int type only represents integers in the range [−231, 231), addition and multiplication are

de�ned in terms of modular arithmetic. As a result, adding two positive numbers may give you a negative

number!

Checkpoint 0

Write a function that returns 1 if the sign bit is 1, and 0 otherwise. That is, write a function that returns

the sign bit shifted to be the least signi�cant bit. Your solution can use any of the bitwise operators, but

will not need all of them.

1 int getSignBit(int x)
2 //@ensures \result == 0 || \result == 1;
3 {
4 return ;
5 }

Frames

In homework, we used a 32-bit C0 integer to store pixels as four 8-bit unsigned quantities, with the alpha

component stored in the eight high-order bits and the blue component stored in the eight low-order bits:

Alpha Red Green Blue

a7a6a5a4a3a2a1a0 r7r6r5r4r3r2r1r0 g7g6g5g4g3g2g1g0 b7b6b5b4b3b2b1b0

(unsigned) (unsigned) (unsigned) (unsigned)

In networking protocols like Ethernet, data is transmitted in the form of a sequence of bits called frames.

In this question we will use a 32-bit C0 integer to store data belonging to one frame. Frames have four

parts:

� The destination address, i.e., the device number where the data is going (6 bit unsigned integer)

� The source address, i.e., the device number where the data is coming from (6 bit unsigned integer)

� The data or payload (18 bit unsigned integer)

� Two bits that are used to ensure that everything is received correctly (the cyclic redundancy check

or CRC).

The interface to the frame type is much like the interface to the pixel type:

typedef int frame;

frame make_frame(int source, int dest, int data)
/*@requires 0 <= source && source < ______; @*/
/*@requires 0 <= dest && dest < ______; @*/
/*@requires 0 <= data && data < 262144; @*/ ;

int get_source(frame F) /*@ensures 0 <= \result && \result < ______; @*/ ;
int get_dest(frame F) /*@ensures 0 <= \result && \result < ______; @*/ ;
int get_data(frame F) /*@ensures 0 <= \result && \result < 262144; @*/ ;

(3.a) Given this format of frames, what is the maximum number (in decimal) of addressable devices in

the network?

1pt

Checkpoint 1

(4.a) For each frame, the CRC value is calculated by counting the total number of �1� bits in the source,

destination, and payload �elds combined, and then �nding the remainder when this number is

divided by 4. What would the CRC be if the source was decimal 15, the destination was decimal

40, and the payload was the decimal number 1024?

One way of packing a frame into a 32-bit integer is as follows:

Destination Source Data CRC

d5d4d3d2d1d0 s5s4s3s2s1s0 i11i10iF iEiDiCiBiAi9i8i7i6i5i4i3i2i1i0 c1c0

(unsigned) (unsigned) (unsigned) (unsigned)

(4.b) In this implementation, if frame f is 0xFADEDBEE, what is the value of get_source(f)?

2pt

Checkpoint 2

(5.a) To calculate the CRC, we're going to write a helper function that counts the number of bits set to

�1� in an arbitrary non-negative integer. Here's the skeleton of one possible implementation. Fill

in the blanks so that it correctly returns the number of bits set to �1� in the non-negative number

x. Some notes:

� This function only has to work with non-negative inputs.

� The second loop invariant should allow you to prove that the postcondition holds.

� The third loop invariant, if completed, should allow you to prove that the assertion after the

loop, //@assert x == 0, always evaluates to true.

int count_ones(int x)
//@requires x >= 0;
//@ensures 0 <= \result && \result <= 31;
{

int ones = 0;
for (int i = 0; i < 31; i++)
//@loop_invariant 0 <= i && i <= 31;

//@loop_invariant ;

//@loop_invariant x & () == 0;
{

if (% ==) {

;
}
x = x >> 1;

}
//@assert x == 0;
return ones;

}

3pt

