
15-122: Principles of Imperative Computation Spring 2018

Lab 4: TA Training 30 January

Collaboration: In lab, we encourage collaboration and discussion as you work through the problems.
These activities, like recitation, are meant to get you to review what we've learned, look at problems from
a di�erent perspective and allow you to ask questions about topics you don't understand. We encourage
discussing problems with your neighbors as you work through this lab!

Setup: Copy the lab code from our public directory to your private directory:

% cd private/15122
% cp −R /afs/qatar.cmu.edu/usr/tjabban/public/lab−testing .

Grading: For full credit, your tests should catch at least half of the bugs. For extra credit, write tests
that catch all of the bugs!

Reminder: it's okay if you don't get extra credit on every lab! The way we grade labs, you will get all
the possible points as long as you attend every lab and get full credit on a handful of labs.

Introduction

Saquib is writing a new programming assignment called sets, where he has students represent sets of
integers as int arrays. One of the functions he wants them to write is intersect which computes the
intersection of two arrays. The relevant section of the writeup is below:

int intersect(int[] A, int n, int[] B, int m, int[] intersection)
//@requires 0 <= n && n <= \length(A);
//@requires 0 <= m && m <= \length(B);
//@requires n <= \length(intersection) || m <= \length(intersection);
/*@ensures 0 <= \result && \result <= m && \result <= n; @*/ ;

The function intersect computes the intersection of two arrays A and B, de�ned as the array
containing all the elements that occur in both A and B (in sorted order and without duplicates). Note
that we do not enforce that A and B have no duplicates nor that they be sorted. Here's an example:

Unfortunately, we cannot just return the intersection as an array and expect the client to know how
long this array is, so we have to do something a little bit more fancy � we have the client give us an
array that they want to be �lled with the intersection, and we just return the number of integers in
the intersection. The example above would now look like this:

Unfortunately, he is busy teaching 122, and so he decided to o�oad writing tests to his trusted TAs.
Then he remembered that all his TAs are busy as well, and came up with the perfect alternative! He
can have students write the tests so he can also see who would be a good TA and he doesn't have to
do interviews! An ingenious solution indeed!

Testing Code

(2.a) When writing test cases involving arrays, it is often helpful to write a function that checks arrays
for equality. Write the following function in �le set−test.c0 that checks if two arrays are equal.

bool arr_eq(int[] A, int n, int[] B, int m)
/*@requires n <= \length(A) && m <= \length(B); @*/ ;

(2.b) Inside function run_tests (in �le set−test.c0), create an exhaustive battery of tests for
intersect. It should return true when run against a correct implementation of intersect, and
false when run against a buggy implementation. We will execute it against 20 di�erent student
implementations of intersect, some correct and many broken in di�erent ways.

The �le testlib.c0 contains the following helper functions, which may be useful while testing:

bool contains_no_dupes(int[] A, int n)
/*@requires 0 <= n && n <= \length(A); @*/ ;

bool is_sorted(int[] A, int n)
/*@requires 0 <= n && n <= \length(A); @*/ ;

We recommend that you create several helper functions, each of which tests some aspects of
intersect (think basic tests, tests about duplicates, edge cases, etc) and returns a bool which
indicates whether the tests passed � it will be helpful if each helper function prints some informative
message before returning (e.g., �Edge case tests passed�, or �Test with [3,2,1] failed�). You can
combine the result of all these auxiliary functions with an AND (&& in C0) before returning from
run_tests.

Run ./check−test. This will run your tests on 20 student versions of intersect, some of which
are correct implementations, and some of which are incorrect. The program ./check−test can
also be run against a speci�c student by calling it with ./check−test −s <student_name>
(run it �rst without arguments to get the student names). Your tests must all pass on correct
implementations in order to get credit. A sample output from that program is below:

% ./check−test
Testing student aardvark (Correct Implementation)

Test 1... Passed
Test 2... Failed
Test 3... Passed

Student code failed a test (expected to pass)
...
Testing student rjsimmon (Incorrect Implementation)

Test 1... Passed
Test 2... Failed
Test 3... Failed

Student code failed a test (expected to fail)... Good!
...
Tested 20 students, 9 students had no failed tests, 11 students had failed tests.
(No credit to be awarded −−− your code fails students with correct code)

1pt (2.c) Your run_tests returns true on all correct implementations of intersect.

2pt (2.d) Additionally, your run_tests returns false on half the buggy implementations of intersect.

3pt (2.e) Additionally, your run_tests returns false on all the buggy implementations of intersect.

