
15-122: Principles of Imperative Computation Spring 2018

Lab 6: Misclaculations 20 February

Collaboration: In lab, we encourage collaboration and discussion as you work through the problems.
These activities, like recitation, are meant to get you to review what we've learned, look at problems from
a di�erent perspective and allow you to ask questions about topics you don't understand. We encourage
discussing problems with your neighbors as you work through this lab!

During the Clac/Exp programming assignment (not just during this lab), we furthermore encourage you
to share any interesting Clac programs you write with other students on Piazza.

Grading: For two points, you must correctly answer (1.a), (2.a), and (2.b). Write down your answers
and get a TA to check them. For three points, �nish the rest of the lab.

Post�x expressions

You are used to in�x arithmetic expressions where the operator is in between its two operands (e.g.,
3 + 4). In post�x expressions, the operand follows (�post�) its two operands (e.g., 3 4 +). Post�x
expressions can be used as operands in other post�x expressions without the need for parentheses. Here
are some examples:

INFIX POSTFIX
1 + 2 * 3 − 4 1 2 3 * + 4 −
(1 + 2) * 3 − 4 1 2 + 3 * 4 −
1 + 2 * (3 − 4) 1 2 3 4 − * +

In an in�x expression, the order of operation is determined by precedence conventions and the use of
parentheses. In a post�x expression, it is determined by the position of the operators.

To evaluate a post�x expression, we can treat it as a queue of tokens of operands and operators (the
front of the queue is on the left and the back on the right), and then use a stack to evaluate it. For
each token in the post�x expression, if it is an operand (e.g., 1), it is pushed on the stack. If it is an
operator, the top two operands are popped from the stack, evaluated using that operator, and the result
is pushed back on the stack. Once all tokens are processed from the queue (from left to right), the �nal
result of the computation should be at the top of the stack.

(1.a) Convert the in�x expression

125 − 15 * (3 + 2) / (6 * 4 + 1)

to post�x by hand, and then trace the algorithm described above to compute the value of the
post�x expression. The result should be the same as if you calculated the in�x expression directly.

1pt

Clac

For your next 15-122 programming assignment, you will implement a stack-based calculator named Clac

that evaluates post�x expressions.

Most Clac tokens, when removed from the queue, only manipulate the stack. Here is a description of a
few tokens that stand for operations. On each line, it shows the state of the stack before and after the
operation is performed, and any side condition or e�ect.

Token Before After Condition or E�ect

n : S −→ S, n for −231 ≤ n < 231 in decimal

+ : S, x, y −→ S, x+ y
− : S, x, y −→ S, x− y

* : S, x, y −→ S, x ∗ y
/ : S, x, y −→ S, x / y error, if div by 0 or over�ow
% : S, x, y −→ S, x% y error, if mod by 0 or over�ow

< : S, x, y −→ S, 1 if x < y
< : S, x, y −→ S, 0 if x ≥ y
drop : S, x −→ S
swap : S, x, y −→ S, y, x
rot : S, x, y, z −→ S, y, z, x
pick : S, xn, . . . , x1, n −→ S, xn, . . . , x1, xn error, if n <= 0
print : S, x −→ S print x followed by newline
quit : S −→ _ exit Clac

Some operations manipulate both the stack and the queue. This kind of transformation is written
token : S || Q −→ S′ || Q′ plus any conditions or e�ect. The operations if and skip are good
examples of this:

Before After
Stack Queue Stack Queue Cond

S, n || if, Q −→ S || Q n 6= 0
S, n || if, tok1, tok2, tok3, Q −→ S || Q n = 0
S, n || skip, tok1, . . . , tokn, Q −→ S || Q n ≥ 0

(2.a) Using the above format, write a description of an operation, called square, which removes the
top element x from the stack and replaces it with x2.

A reference (i.e., completed) implementation clac−ref is available on AFS. Use the −trace option
to see how the stack and queue change as an expression is evaluated:

% clac−ref −trace
clac>> 2 3 * 4 +

stack || queue
|| 2 3 * 4 +

2 || 3 * 4 +
2 3 || * 4 +
6 || 4 +

6 4 || +
10 ||

Note that the stack is written left (bottom) to right (top). Enter quit to exit Clac.

(2.b) Use clac−ref to compute the value of your post�x expression from Exercise 1. What is the
maximum size of the stack as this expression is evaluated?2pt

Clac is a powerful language. Let's play with it.

The sequence of tokens

if a 1 skip b (where a and b stand for integers)

pops the top operand o� the stack, and pushes a on the stack if the popped value was 1 or b if the
popped value was 0.

(2.c) Determine what the following Clac expression computes, substituting di�erent values for x as you
test it.

x x 0 < if −1 1 skip 1 *

We can create new operations in Clac by using the �:� token followed by the operation name, then the
sequence of tokens that it stands for, and a �nal �;� token. For example, here is an operations that
squares the number on top of the stack:

: square 1 pick * ;

(2.d) Implement and test an operation that performs the computation in (2.c) by assuming that one
copy of x is on the top of the stack before the function is executed.3pt

