
15-122: Principles of Imperative Computation Spring 2018

Lab 11: PQ puns are too hard 20 March

Collaboration: In lab, we encourage collaboration and discussion as you work through the problems.

These activities, like recitation, are meant to get you to review what we've learned, look at problems from

a di�erent perspective and allow you to ask questions about topics you don't understand. We encourage

discussing problems with your neighbors as you work through this lab!

Setup: Copy the lab code from our public directory to your private directory:

% cd private/15122
% cp −R /afs/andrew/course/15/122/misc/lab−pq .
% cd lab−pq

You should add your code to the existing �les pqsort.c1 and pqmedian.c1 in the directory lab−pq.
Grading: Finish at least task (2.a) or (2.b) for credit, and additionally �nish (3.a) for extra credit. We

want you to think about the last problem. Once your code passes the tests, show it to a TA. Make sure

you have reasonable contracts!

Generic priority queues

In this lab, we'll use an implementation of generic priority queues. We implemented priority queues as

heaps in class.

/************************/
/*** Client interface ***/
/************************/
typedef void* elem;

// f(x,y) returns true if e1 is STRICTLY higher priority than e2
typedef bool has_higher_priority_fn(elem e1, elem e2);

/*************************/
/*** Library interface ***/
/*************************/
// typedef ______* pq_t;

bool pq_empty(pq_t P)
/*@requires P != NULL; @*/ ;

pq_t pq_new(has_higher_priority_fn* prior)
/*@requires prior != NULL; @*/
/*@ensures \result != NULL && pq_empty(\result); @*/ ;

void pq_add(pq_t P, elem e)
/*@requires P != NULL; @*/ ;

elem pq_rem(pq_t P)
/*@requires P != NULL && !pq_empty(P); @*/ ;

int pq_size(pq_t H)
/*@requires H != NULL; @*/ ;

Unlike the priority queues from class, these priority queues are unbounded (in particular, there is no

pq_full function). Note that the interface provides the function pq_size(H), which returns the

number of elements in priority queue H. The code you see here is from pq.c1, which you'll need to

compile along with your code for this assignment. While the priority queue interface we give you is,

in fact, implemented with the heap data structure (with the unbounded array trick to be used so that

they don't get full), you should respect the interface and not rely on this assumption for anything except

e�ciency.1pt

Sorting using priority queues

In this part, you'll use the priority queue interface to sort an array. Your solution should work with any

implementation of priority queues. If priority queues are implemented as heaps the way we did in class,

sorting the array should have worst-case complexity in O(n log n).

Hint: Most of the work you have to do is in correctly instantiating the client interface. Don't re-

implement the heap data structure, and don't re-implement a sort like mergesort or quicksort. Do

respect the interface of priority queues.

(2.a) In the �le pqsort.c1, use priority queues to �nish the implementation of sort_by_word, which
takes an array of frequency information structs and sorts them by ASCII-betically by the words.

(2.b) In the �le pqsort.c1, use priority queues to �nish the implementation of sort_by_count, which
takes an array of frequency information structs and sorts them by frequency.

Compile and test your code by running this command:

% cc0 −d −x pq.c1 pqsort.c1

The �rst set of outputs should be sorted by word, and the second set of outputs should be sorted by

frequency.2pt

Finding the median

We know how to return the element with highest priority out of a priority queue. Now, let's �nd the

element with the k-th highest priority (if k is 1, it returns the element of highest priority).

(3.a) In �le pqmedian.c1, complete the implementation of the function k_priority(H,k) that returns

the k-th priority element in priority queue H. On return, H should contain the same elements as

when the function was called.

The median of a collection H of elements is the element m in H so that half of the other elements of H
are larger than or equal to m and the other half is smaller or equal to m. If H contains an even number

of elements, this de�nition is ambiguous since it asks us to take �half� of an odd number of elements.

In this case, we will (inaccurately) let the �smaller half� have one element more than the �larger half�.1

(3.b) Also in �le pqmedian.c1, complete the implementation of the function median(H) that returns

the median element in priority queue H. On return, H should contain the same elements as when

the function was called. Hint: the function pq_size may come handy.

Compile and test your code by running this command:

% cc0 −d −x pq.c1 pqmedian.c13pt
1You can �nd the actual de�nition of median online. Why can't we use it in this exercise?

