
15-122: Principles of Imperative Computation Spring 2018

Lab 12: Once you C1 you C them all 29 March

Collaboration: In lab, we encourage collaboration and discussion as you work through the problems.

These activities, like recitation, are meant to get you to review what we've learned, look at problems from

a di�erent perspective and allow you to ask questions about topics you don't understand. We encourage

discussing problems with your neighbors as you work through this lab!

Setup: Copy the lab code from our public directory to your private directory:

% cd private/15122
% cp −R /afs/andrew/course/15/122/misc/lab−string .
% cd lab−string

Grading: Finish through (3.b) for 2 points. Finish through (5.b) for 3 points.

BST Free

We will start the lab by recalling the BST structure, and afterward, writing a BST_free function.

INTERFACE:
typedef struct bst_header *bst;
typedef int compare_fn(void *e1, void *e2);
typedef void free_fn(void* e);

bst bst_new(compare_fn *elem_compare, free_fn *elem_free);
void bst_insert(bst B, void *e); /* e cannot be NULL! */
void *bst_lookup(bst B, void *e); /* return NULL if not in tree */
void bst_free(bst B);

PART OF BST IMPLEMENTATION
typedef int compare_fn(void* e1, void* e2);

typedef struct tree_node tree;
struct tree_node {
void* data;
tree* left;
tree* right;

};

typedef struct bst_header bst;
struct bst_header {
tree* root;
compare_fn* compare;
free_fn* elem_free_fn;

};

As we learned in lecture, C doesn't do memory management like was done in C0. As a result, we need

to use the free function to free memory for use by the operating system. We can't free everything,

though! As the implementation (because our data structure is generic), we have no way of knowing how

to free the data provided by the client. As such, our freeing function takes a function pointer from the

client that frees elements (or is NULL in the case of the client wishing to not free the memory).

Now, let's write the BST_free function with the above in mind:

1 void tree_free(tree *T, free_fn *elemfree) {
2 if (T != NULL) {
3 if (!= NULL) {
4 (*elemfree)(T−>data);
5 }
6 tree_free();
7 tree_free();
8 ;
9 }
10 return;
11 }
12

13 void bst_free(bst B) {
14 REQUIRES();
15 ;
16 ;
17 return;
18 }

Partial ASCII Table

32 20 64 40 @ 96 60 `

33 21 ! 65 41 A 97 61 a

34 22 " 66 42 B 98 62 b

35 23 # 67 43 C 99 63 c

36 24 $ 68 44 D 100 64 d

37 25 % 69 45 E 101 65 e

38 26 & 70 46 F 102 66 f

39 27 ' 71 47 G 103 67 g

40 28 (72 48 H 104 68 h

41 29) 73 49 I 105 69 i

42 2A * 74 4A J 106 6A j

43 2B + 75 4B K 107 6B k

44 2C , 76 4C L 108 6C l

45 2D - 77 4D M 109 6D m

46 2E . 78 4E N 110 6E n

47 2F / 79 4F O 111 6F o

48 30 0 80 50 P 112 70 p

49 31 1 81 51 Q 113 71 q

50 32 2 82 52 R 114 72 r

51 33 3 83 53 S 115 73 s

52 34 4 84 54 T 116 74 t

53 35 5 85 55 U 117 75 u

54 36 6 86 56 V 118 76 v

55 37 7 87 57 W 119 77 w

56 38 8 88 58 X 120 78 x

57 39 9 89 59 Y 121 79 y

58 3A : 90 5A Z 122 7A z

59 3B ; 91 5B [123 7B {

60 3C < 92 5C \ 124 7C |

61 3D = 93 5D] 125 7D }

62 3E > 94 5E ^ 126 7E ∼
63 3F ? 95 5F _

Storing and using strings in C

Load the �le ex1.c into a text editor. Read through the �le

and write down what you think the output will be before you

run the program:

word string:

word ASCII values:

Once you have done this, compile with the following command

(all on one line):

% gcc -Wall -Wextra -Werror -Wshadow -std=c99

-pedantic -g ex1.c

(2.a) Which parts di�ered from what you expected?

(2.b) Change the `\0' character in the array to something else, like

`d'. Predict how this will change the answer, and then compile

and see if you're right.

(2.c) Run the modi�ed code under valgrind, and read through its

output to see which lines in ex1.c are given as part of the

output.

At this point, compare notes with people around you to see if

you have the same answers for (1.b) and (1.c). Ask a TA if

there's anything you're unsure about!1pt

Arrays of strings

Load the �le ex2.c into a text editor. Read through the �le and write down what you think the output

will be before you run the program.

Once you have done this, compile and run the program:

% gcc −Wall −Wextra −Werror −Wshadow −std=c99 −pedantic −g ex2.c
% ./a.out
% valgrind ./a.out

(3.a) We never free any memory in this program, yet valgrind reports no memory leaks. Why? Where

are the strings stored? Where is the memory for the array stored?

(3.b) What do you think will happen if we change num_states to 7 without changing any other part

of the program? Make this change, and explain the output you see in Valgrind.

Discuss the answer to (2.a) with a TA, and explain how you might use the output from valgrind to

identify the bug you introduced in (2.b), to get checked in for this lab.2pt

C string libraries

The header �le string.h outlines a number of string functions that can be used (often incorrectly) in

C programs. They include:

char *strcpy(char *dest, const char *src)
char *strncpy(char *dest, const char *src, size_t n)
size_t strlen(const char *str)

Read about how these functions work here:

http://en.wikipedia.org/wiki/C_string_handling#Functions

These functions assume that the pointers point to a NUL-terminated string (i.e., a string that ends with

the character `\0', which has ASCII value 0).

(4.a) Load the �le ex3.c into a text editor. Read through the �le and decide what you think the output

will be before you run the program.

% gcc −Wall −Wextra −Werror −Wshadow −std=c99 −pedantic −g ex3.c
% ./a.out

(4.b) Did the results surprise you? Can you explain the di�erence in behavior of the two functions?

http://en.wikipedia.org/wiki/C_string_handling#Functions

Programming with C strings

(5.a) Write a C function in a new �le ex4.c that reverses a string and returns a pointer a new string

with the result. The function should have the following prototype:

char *reverse(char *s);

(5.b) Write a main function to test your function on a number of strings. Include only those header �les

that are necessary to compile your code. If you allocate memory, use calloc and be sure to free

what you allocate.

Compile and run your code with these commands:

% gcc −Wall −Wextra −Werror −Wshadow −std=c99 −pedantic −g lib/*.c ex4.c
% ./a.out

3pt

