
15-122: Principles of Imperative Computation Spring 2018

Lab 13: All sorts of sorts 3 April

Collaboration: In lab, we encourage collaboration and discussion as you work through the problems.

These activities, like recitation, are meant to get you to review what we've learned, look at problems from

a di�erent perspective and allow you to ask questions about topics you don't understand. We encourage

discussing problems with your neighbors as you work through this lab!

Setup: Copy the lab code from our public directory to your private directory:

% cd private/15122
% cp −R /afs/andrew/course/15/122/misc/lab13 .
% cd lab13

Grading: Finish task (1.a) for 2 points, and �nish both tasks (1.a) and (1.b) for 3 points.

Generic sort

Today we will explore the di�erence between void* in C0 and void* in C, and exploit that di�erence

to write a generic sort in C.

The image above shows a 16 byte allocation where each byte contains an 8-bit value. The actual size

of a byte in C is implementation-de�ned and so can be 8 bits or more. You can pretty much count on a

byte being 8 bits on current computers.

If we have a pointer A whose value is 0xB58, then the way we interpret that pointer depends on the type

of the pointer. As a char*, the pointer A points to the value 0x48 or ’H’, the �rst character in the NUL-
terminated string "Hello, everyone". As an int32_t*, the pointer A points to a signed integer, the

�rst element in an array of four integers. (According to the implementation-de�ned behavior we usually

expect, this array contains the four integers 1819043144, 1696607343, 2037540214, and 6647407.) If A
is a void*, then we know nothing about how to interpret, read from, or write to this block of memory.

In this lab, we will write a function that sorts arrays without knowing anything about how to interpret,

read from, or write to the memory addresses in that array. The client will tell us the how many elements

there are (count) and the size of each element (elt_size). The client will also tell us how to interpret

(with a comparison function) and manipulate (with a swap function) elements of the array.

typedef void swap_fn(void *x, void *y)
/*@requires x != NULL && y != NULL; @*/ ;

// Compares the values at memory locations x and y
typedef int compare_fn(void *x, void *y)
/*@requires x != NULL && y != NULL; @*/
/*@ensures −1 <= \result && \result <= 1; @*/ ;

void gsort(void *A, size_t count, size_t elt_size,
swap_fn *swp, compare_fn *cmp)

/*@requires A != NULL && swp != NULL && cmp != NULL; @*/
/* requires that A is an allocation of at least count * elt_size */ ;



The interface above is provided in lib/gsort.h. Your implementation in gsort.c is one of the very

small number of cases in C where it is acceptable to cast a void* to another pointer type without being

absolutely certain what type the void* originally was. (Remember that it was never acceptable to do

this in C1.)

If a client asks us to sort the 5 two-byte values starting at the void pointer 0xB58, then we know that

the �ve elements in the array have the addresses 0xB58, 0xB5A, 0xB5C, 0xB5E, and 0xB60. We can

calculate the address of the array element that the client thinks of as A[3] by casting A to a char*
and then writing either (A + 6) or &A[6]. This makes sense because a char is always one byte and

because 6 is the array o�set (3) times the size of an array element in bytes (2).1pt
All we need to do to sort is calculate the addresses where array elements begin and pass these addresses

to the client functions. The client's functions know how to compare and swap values given the addresses

of those values. Because you are writing the sorting algorithm without knowing what values are being

stored, you shouldn't ever access the memory in the array directly.

(1.a) Write a generic sort in gsort.c according to the strategy described above. Make sure your

gsort.c includes "lib/gsort.h". A C0 version of selection sort is given to you below and in

sort.c0. Don't worry about translating the contracts. You can test your code by running:

% make
% ./a.out

2pt

(1.b) Modify gsort−test.c to sort arrays of frequency counts by both frequency and by word (ac-

cording to the string.h function strcmp).3pt

Selection sort in C0

1 void sort(int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@ensures is_sorted(A, 0, n);
4 {
5 for (int i = 0; i < n; i++)
6 //@loop_invariant 0 <= i && i <= n;
7 //@loop_invariant is_sorted(A, 0, i);
8 //@loop_invariant le_segs(A, 0, i, A, i, n);
9 {
10 int min = i;
11 for (int j = i + 1; j < n; j++)
12 //@loop_invariant i < j && j <= n;
13 //@loop_invariant i <= min && min < n;
14 //@loop_invariant le_seg(A[min], A, i, j);
15 {
16 if (A[j] < A[min]) {
17 min = j;
18 }
19 }
20 swap(A, i, min);
21 }
22 }


