
15-122: Principles of Imperative Computation Spring 2018

Lab 15: Spend some cycles thinking 17 April

Collaboration: In lab, we encourage collaboration and discussion as you work through the problems.

These activities, like recitation, are meant to get you to review what we've learned, look at problems from

a di�erent perspective and allow you to ask questions about topics you don't understand. We encourage

discussing problems with your neighbors as you work through this lab!

Setup: Copy the lab code from our public directory to your private directory:

% cd private/15122
% cp −R /afs/andrew/course/15/122/misc/lab15 .
% cd lab15

You should add your code to the existing �les graph.c, graph−search.c, graph−search.h, and
graph−test.c in the directory lab15.

Grading: Finish through (2.d) for full credit, and �nish (3.a) and (3.b) for extra credit.

The graph interface

This lab involves implementing a graph using an adjacency matrix rather than an array of adjacency lists.

Graphs will be speci�ed by the following C interface (as in graph.h):

typedef unsigned int vertex;
// typedef ______* graph_t;

// New graph with numvert vertices
graph graph_new(unsigned int numvert);
//@ensures \result != NULL;

unsigned int graph_size(graph G);
//@requires G != NULL;

bool graph_hasedge(graph G, vertex v, vertex w);
//@requires G != NULL;
//@requires v < graph_size(G) && w < graph_size(G);

void graph_addedge(graph G, vertex v, vertex w);
//@requires G != NULL;
//@requires v != w && v < graph_size(G) && w < graph_size(G);
//@requires !graph_hasedge(G, v, w);

void graph_free(graph G);
//@requires G != NULL;

Representing undirected graphs with an adjacency matrix

In class, we discussed the adjacency list implementation of graphs. In this lab, we'll work through the

adjacency matrix implementation.

Recall that if a graph has n vertices, then its adjacency matrix adj is an n×n array of booleans such that

adj[i][j] is true if there is an edge from vertex i to vertex j (for valid i and j), false otherwise.



Since the graph is undirected, if adj[i][j] is true, then adj[j][i] should also be true, and if

adj[i][j] is false, then adj[j][i] should also be false. The graph should not have any self-loops

(i.e., a vertex with an edge to itself).

(2.a) Complete the data structure invariant function is_graph that returns true if G points to a valid

graph given the de�nition above, or false otherwise.

Make sure to capture the fact that the graph is undirected in your data structure invariant! Compare

notes with a neighbor before you move on.1pt

(2.b) Complete the graph_new function that creates a new graph using a dynamically-allocated 2D

array of boolean for the adjacency matrix. Create the 2D array in two steps: �rst create a new 1D

array of type bool*, then for each array element, have it point to a new 1D array of type bool.
You can then access the array using the 2D notation (e.g., G−>adj[0][1] = true).

Note: Don't ever do this in practice! C has ways of supporting 2D arrays that don't require an extra

array of pointers; you'll learn about this more e�cient way of doing things in later classes, like 15-213.

(2.c) Complete the functions graph_hasedge that checks if an edge is in the graph and graph_addedge
that adds a new edge to the graph.

(2.d) Complete the graph_free function that frees any dynamically-allocated memory for the given

graph G.

Once you are done implementing the functions above, you should have a complete graph.c. Compile

your code and test it with the given DFS and BFS searches in graph−search.c and the given graphs

in graph−test.c:

% make graphtest
% ./graphtest

All tests should pass. (Look at the graphs in graph−test.c to see why.) Be sure to use valgrind
also to make sure you have freed all memory you allocated!2pt

Testing for graph connectedness

We say that a graph G is fully connected if there is a path from any vertex to any other vertex in G.

In an undirected graph, this de�nition is equivalent to saying that there is a path from a single arbitrary

vertex to any other vertex. Can you see why?

(3.a) Write a function fully_connected(G) in graph−search.c that returns true if a graph G is

fully connected, or false otherwise. Make sure your implementation is as e�cient as possible.

Hint: Perform a BFS and count the number of vertices visited. For a fully connected graph, the

total should be a speci�c value. Test your function on several graphs, fully connected and not fully

connected.

(3.b) Update graph−search.h with the new function, and write at least two test cases in graph−test.c:
one where fully_connected returns true, and one where it returns false.3pt


