
Lecture 17
Priority Queues

15-122: Principles of Imperative Computation (Spring 2018)
Frank Pfenning, Rob Simmons

In this lecture we will look at priority queues as an abstract type and discuss
several possible implementations. We then pick the representation as heaps
and start to work towards an implementation (which we will complete in
the next lecture). Heaps have the structure of binary trees, a very common
structure since a (balanced) binary tree with n elements has depth O(log n).
During the presentation of algorithms on heaps we will also come across
the phenomenon that invariants must be temporarily violated and then re-
stored. We will study this in more depth in the next lecture. From the
programming point of view, we will see a cool way to implement binary
trees in arrays which, alas, does not work very often.

This maps as follows to our learning goals:

Computational Thinking: We focus on the trade-offs of various represen-
tations for a given data structure, and dip our toes in the idea of tem-
porarily violating invariants.

Algorithms and Data Structures: We introduce priority queues, a com-
mon data structure for prioritized task lists, and heaps, an efficient
way to implement them.

Programming: For once, we won’t be doing any programming in this lec-
ture!

1 Priority Queues

A priority queue is like a queue, a stack, or an unbounded array: there’s
an add function (enq, push, arr_add) and a delete function (deq, pop,
arr_rem). Stacks and queues can be generally referred to as worklists. A
priority queue will be a new kind of worklist. We think of each element as a

LECTURE NOTES c© Carnegie Mellon University 2018



Lecture 17: Priority Queues 2

task: we put all the work we need to do on the worklist (like enq/push/add),
and then consult the worklist to find out what work we should do next (like
deq/pop/rem).

Queues and stacks have a fixed way of deciding which element gets
removed: queues always remove the element that was added first (FIFO),
and stacks always remove the element that was added most recently (LIFO).
This makes the client interface for generic stacks and queues very easy: the
queue or stack doesn’t need to know anything about the generic type elem.
The library doesn’t even need to know if elem is a pointer. (Of course, as
clients, we’ll probably want elem to be defined as the generic type void*.)

For example, here’s again the interface for stacks:

/* Client interface for stacks */
// typedef _______ elem;

/* Library interface for stacks */
// typedef ______* stack_t;

bool stack_empty(stack_t S)
/*@requires S != NULL; @*/ ;

stack_t stack_new()
/*@ensures \result != NULL; @*/ ;

void push(stack_t S, elem x)
/*@requires S != NULL; @*/ ;

elem pop(stack_t S)
/*@requires S != NULL && !stack_empty(S); @*/ ;

Rather than fixing, once and for all, the definition of what elements will
get returned first, priority queues allow the client to decide in what order
elements will get removed. The client has to explain how to give every
element a priority, and the priority queue ensures that whichever element
has the highest priority will get returned first. For example, in an operating
system the runnable processes might be stored in a priority queue, where
certain system processes are given a higher priority than user processes.
Similarly, in a network router packets may be routed according to some
assigned priorities.



Lecture 17: Priority Queues 3

To implement the library of priority queues, we need the user to give
us a function higher_priority(x,y) that returns true only when x has
strictly higher priority than y.

/* Client-side interface for priority queues */
// typedef _______ elem;

typedef bool higher_priority_fn(elem e1, elem e2);

Once we’ve defined the client interface for priority queues, the inter-
face is very similar to the stacks and queues we’ve seen before: pq_new
creates a new priority queue, pq_empty checks whether any elements ex-
ist, and pq_add and pq_rem add and remove elements, respectively. We
also add a function pq_peek which returns the element that should be re-
moved next without actually removing it. For stacks, this operation can be
implemented on the client-side in constant time, but that is not the case for
queues and may not be the case for priority queues.

/* Library-side interface */
// typedef ______* pq_t;

bool pq_empty(pq_t P)
/*@requires P != NULL; @*/ ;

pq_t pq_new(higher_priority_fn* prior)
/*@requires prior != NULL; @*/
/*@ensures \result != NULL; @*/
/*@ensures pq_empty(\result); @*/ ;

void pq_add(pq_t P, elem x)
/*@requires P != NULL; @*/ ;

elem pq_rem(pq P)
/*@requires P != NULL && !pq_empty(P); @*/ ;

elem pq_peek(pq P)
/*@requires P != NULL && !pq_empty(P); @*/ ;

In this lecture, we will actually use heaps to implement bounded prior-
ity queues. When we create a bounded worklist, we pass a strictly positive
maximum capacity to the function that creates a new worklist (pq_new).
We also add a new function that checks whether a worklist is at maximum



Lecture 17: Priority Queues 4

capacity (pq_full). Finally, it is a precondition to pq_add that the priority
queue must not be full. Bounding the size of a worklist may be desirable to
prevent so-called denial-of-service attacks where a system is essentially dis-
abled by flooding its task store. This can happen accidentally or on purpose
by a malicious attacker. To accommodate this, we make the following ad-
dition and changes to the above interface:

/* Library-side interface -- heap implementation */
// ...

bool pq_full(pq_t P)
/*@requires P != NULL; @*/ ;

pq_t pq_new(int capacity, higher_priority_fn* prior)
/*@requires capacity > 0 && prior != NULL; @*/
/*@ensures \result != NULL; @*/
/*@ensures pq_empty(\result); @*/ ;

void pq_add(pq_t P, elem x)
/*@requires P != NULL && !pq_full(P); @*/ ;

2 Some Implementations

Before we come to heaps, it is worth considering different implementation
choices for bounded priority queues and consider the complexity of vari-
ous operations.

The first idea is to use an unordered array where the length of the array
is the maximum capacity of the priority queue, along with a current size
n. Inserting into such an array is a constant-time operation, since we only
have to insert it at n and increment n. However, finding the highest-priority
element (pq_peek) will take O(n), since we have to scan the whole portion
of the array that’s in use. Consequently, removing the highest-priority el-
ement also takes O(n): first we find the highest-priority element, then we
swap it with the last element in the array, then we decrement n.

A second idea is to keep the array sorted. In this case, inserting an ele-
ment is O(n). We can quickly (in O(log n) steps) find the place i where it be-
longs using binary search, but then we need to shift elements to make room
for the insertion. This take O(n) copy operations. Finding the highest-
priority element is definitely O(1), and if we arrange the array so that the



Lecture 17: Priority Queues 5

highest-priority elements are at the end, deletion is also O(1).
If we instead keep the elements sorted in an AVL tree, the AVL height

invariant ensures that insertion becomes a O(log n) operation. We haven’t
considered deletion from AVL trees, though it can be done in logarithmic
time.

The heap structure we present today also gives logarithmic time for
adding an element and removing the element of highest priority. Heaps
are also more efficient, both in terms of time and space, than using balanced
binary search trees, though only by a constant factor.

In summary:

pq_add pq_rem pq_peek
unordered array O(1) O(n) O(n)
ordered array O(n) O(1) O(1)
AVL tree O(log n) O(log n) O(log n)
heap O(log n) O(log n) O(1)

3 The Min-heap Ordering Invariant

A min-heap is a binary tree structure, but it is a very different binary tree
than a binary search tree.

The min-heaps we are considering now can be used as priority queues
of integers, where smaller integers are treated as having higher priority. (The
alternative is a max-heap, where larger integers are treated as having higher
priority.) Therefore, while we focus our discussion on heaps, we will talk
about “removing the minimal element” rather than “removing the element
with the highest priority.”

Typically, when using a priority queue, we expect the number of inserts
and deletes to roughly balance. Then neither the unordered nor the or-
dered array provide a good data structure since a sequence of n inserts and
deletes will have worst-case complexity O(n2). A heap uses binary trees to
do something in between ordered arrays (where it is fast to remove) and
unordered arrays (where it is fast to add).

A min-heap is a binary tree where the invariant guarantees that the min-
imal element is at the root of the tree. For this to be the case we just require
that the key of a node be less than or equal to the keys of its children. Al-
ternatively, we could say that each node except the root is greater than or
equal to its parent.

Min-heap ordering invariant (alternative 1): The key of each node in the
tree is less than or equal to all of its children’ keys.



Lecture 17: Priority Queues 6

Min-heap ordering invariant (alternative 2): The key of each node in the
tree except for the root is greater than or equal to its parent’s key.

These two characterizations are equivalent. Sometimes it turns out to be
convenient to think of it one way, sometimes the other. Either of them im-
plies that the minimal element in the heap is a the root, due to the transi-
tivity of the ordering.

Given any tree obeying the min-heap ordering invariant, we know that
the minimal element is at the root of the tree. Therefore, we can expect that
we can find the minimal element in O(1) time.

4 The Heap Shape Invariant

We’ll simultaneously give heaps a second invariant: we fill the tree level
by level, from left to right. This means the shape of the tree is completely
determined by the number of elements in it. Here are the shapes of heaps
with 1 through 7 nodes:

We call this latter invariant the heap shape invariant. A tree that has the heap
shape invariant is almost perfectly balanced.

The heap shape invariant would not be a useful invariant for a binary
search tree, because it is too costly to do insertion in a binary search tree
while maintaining both the binary search tree ordering invariant and the
heap shape invariant. As we will see, we can do addition to heaps and re-
moval from heaps quite efficiently while maintaining both the heap shape
invariant and the heap ordering invariant.



Lecture 17: Priority Queues 7

5 Adding to a Heap

When we add a new integer to a min-heap, we already know (by the shape
invariant) where a new node has to go. However, we cannot simply put
the new data element there, because it might violate the ordering invariant.
We do it anyway and then work to restore the invariant. We will talk more
about temporarily violating a data structure invariant in the next lecture, as
we develop code. Let’s consider an example. On the left is the heap before
insertion of data with key 1; on the right after, but before we have restored
the invariant.

insert 1

The dashed line indicates where the ordering invariant might be violated.
And, indeed, 3 > 1.

We can fix the invariant at the dashed edge by swapping the two nodes.
The result is shown on the right.

swap 1 up

The link from the node with key 1 to the node with key 8 will always satisfy
the invariant, because we have replaced the previous key 3 with a smaller
key (1). But the invariant might now be violated going up the tree to the
root. And, indeed 2 > 1.

We repeat the operation, swapping 1 with 2.



Lecture 17: Priority Queues 8

swap 1 up

As before, the link between the root and its left child continues to satisfy
the invariant because we have replaced the key at the root with a smaller
one. Furthermore, since the root node has no parent, we have fully restored
the ordering invariant.

In general, we swap a node with its parent if the parent has a strictly
greater key. If not, or if we reach the root, we have restored the ordering
invariant. The shape invariant was always satisfied since we inserted the
new node into the next open place in the tree.

The operation that restores the ordering invariant is called sifting up,
since we take the new node and move it up the heap until the invariant has
been reestablished. The complexity of this operation is O(l), where l is the
number of levels in the tree. For a tree of n ≥ 1 nodes there are log2 n + 1
levels. So the complexity of inserting a new node is O(log n), as promised.

6 Removing the Minimal Element

To delete the minimal element from a min-heap we cannot simply delete
the root node where the minimal element is stored, because we would not
be left with a tree. But by the shape invariant we know how the post-
deletion tree has to be shaped. So we take the last element in the bottom-
most level of the tree and move it to the root, and delete that last node.

delete 2 and

swap 8 in



Lecture 17: Priority Queues 9

However, the node that is now at the root might have a strictly greater key
than one or both of its children, which would violate the ordering invariant.

If the ordering invariant in indeed violated, we swap the node with the
smaller of its children.

swap 8 down

This will reestablish the invariant at the root. In general we see this as
follows. Assume that before the swap the invariant is violated, and the left
child has a smaller key than the right one. It must also be smaller than
the root, otherwise the ordering invariant would hold. Therefore, after we
swap the root with its left child, the root will be smaller than its left child.
It will also be smaller than its right child, because the left was smaller than
the right before the swap. When the right child is smaller than the left, the
argument is symmetric.

Unfortunately, we may not be done, because the invariant might now
be violated at the place where the old root ended up. If not, we stop. If yes,
we compare the children as before and swap with the smaller one.

swap 8 down

We stop this downward movement of the new node if either the order-
ing invariant is satisfied, or we reach a leaf. In both cases we have fully
restored the ordering invariant. This process of restoring the invariant is
called sifting down, since we move a node down the tree. As in the case for



Lecture 17: Priority Queues 10

insert, the number of operations is bounded by the number of levels in the
tree, which is O(log n) as promised.

7 Representing Heaps as Arrays

A first thought on how to represent a heap would be using structs with
pointers. The sift-down operation follows the pointers from nodes to their
children, and the sift-up operation goes from children to their parents. This
means all interior nodes require three pointers: one to each child and one
to the parent, the root requires two, and each leaf requires one. We’d also
need to keep track of the number of nodes in the tree.

While a pointer structure is not unreasonable, there is a more elegant
representation using arrays. We use binary numbers as addresses of tree
nodes, numbering nodes level by level starting at the root, and left to right
on each level. Assume a node has index i. Then we append a 0 to the binary
representation of i to obtain the index for the left child and a 1 to obtain the
index of the right child. We start at the root with the number 1. If we tried
to use 0, then the root and its left child would get the same address. The
node number for a full three-level tree on the left in binary and on the right
in decimal.

Mapping this back to numeric operations, for a node at index i we obtain
its left child as 2i, its right child as 2i + 1, and its parent as i/2. Care must
be taken, since any of these may be out of bounds of the array. A node may
not have a right child, or neither right nor left child, and the root does not
have a parent.

In the next lecture we will write some code to implement heaps and
reason about its correctness.



Lecture 17: Priority Queues 11

Exercises

Exercise 1. One of many options is using a sorted linked list instead of a sorted
array to implement priority queues. What is the complexity of the priority queue
operations on this representation? What are the advantages/disadvantages com-
pared to an ordered array?

Exercise 2. Consider implementing priority queues using an unordered list in-
stead of an unordered array to implement priority queues. What is the complex-
ity of the priority queue operations on this representation? What are the advan-
tages/disadvantages compared to an unordered array?


	Priority Queues
	Some Implementations
	The Min-heap Ordering Invariant
	The Heap Shape Invariant
	Adding to a Heap
	Removing the Minimal Element
	Representing Heaps as Arrays

