
Lecture 19
Data Structures in C

15-122: Principles of Imperative Computation (Spring 2018)
Rob Simmons

In this lecture, we begin our transition to C [?]. In many ways, the lecture is
therefore about knowledge rather than principles, a return to the emphasis
on programming that we had at the very beginning of the semester. In
future lectures, we will explore some deeper issues in the context of C.
Today’s lecture is designed to get you to the point where you can translate a
simple C0/C1 program or library (one that doesn’t use arrays, which we’ll
talk about in the next lecture) from C0/C1 to C. An important complement
to this lecture is the “C for C0 programmers” tutorial:

http://c0.typesafety.net/tutorial/From-C0-to-C:-Basics.html

There are two big ideas you need to know about. First, C has a whole
separate language wrapped around it, the C preprocessor language. The pre-
processor language can be used for a bunch of things: you only need to
understand a couple of ways that it gets used:

• Macro constant definitions: you’ll need to know how these are used in
the <limits.h> and <stdbool.h> libraries.

• Macro function definitions: you’ll need to know how these are used to
implement the "lib/contracts.h" library, and you’ll need to know
why they’re generally a dangerous idea.

• Conditional compilation: you need to know how #ifdef and #ifndef
are used, along with macro constant definitions, to make separate com-
pilation of libraries work in C.

Second, C has a different notion of allocating memory than C0. In par-
ticular, C is not garbage collected, so whenever we allocate memory, we
have to make sure that memory eventually gets freed.

LECTURE NOTES c© Carnegie Mellon University 2018

http://c0.typesafety.net/tutorial/From-C0-to-C:-Basics.html


Lecture 19: Data Structures in C 2

1 Running Example

Our discussion will center around translating a very simple C0 interface
and implementation, and a little program that uses that interface.

1.1 A simple interface simple.c0

1 #use <util>
2

3 /*** Interface ***/
4 int absval(int x)
5 /*@requires x > int_min(); @*/
6 /*@ensures \result >= 0; @*/ ;
7

8 struct point2d {
9 int x;

10 int y;
11 };
12

13 /*** Implementation ***/
14 int absval(int x)
15 //@requires x > int_min();
16 //@ensures \result >= 0;
17 {
18 int res = x < 0 ? -x : x;
19 return res;
20 }

1.2 A simple test program: test.c0

#use <conio>
int main() {
struct point2d* P = alloc(struct point2d);
P->x = -15;
P->y = P->y + absval(P->x * 2);
assert(P->y > P->x && true);
print("x coord: "); printint(P->x); println("\n");
return 0;

}

We can compile this program by running: cc0 -d simple.c0 test.c0



Lecture 19: Data Structures in C 3

2 Introducing the preprocessor language

In C0 programs, just about the only time we typed the ’#’ key was to include
a built-in library like conio by writing: #use <conio>. The C preprocessor
language is built around different directives that all start with ’#’. The first
two you need to know about are #include and #define.

The #include directive is what replaces #use in C0. Here are some
common #include directives you’ll see in C programs:

#include <stdlib.h>
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>

The <stdlib.h> library is related to C0’s <util> library, <stdio.h> is re-
lated to <conio> in C0, and <string.h> is related to <string> in C0.

The <stdbool.h> file is also important: the type bool and the constants
true and false aren’t automatically included in C, so this library includes
them. We’ll talk more about libraries, and in particular the .h extension,
later.

3 Macro definitions

C0 has a very simple rule: an interface can describe types, structs, and func-
tions. This leads to some weirdnesses, though: the C0 <util> library has to
give you a function, int_max(), for referring to the maximum representable
32-bit two’s complement integer.

The #define macro gives you a way to define this as a constant in C.

#define INT_MAX 0x7FFFFFFF

In C, the directives of the preprocessor language are used by a preprocessor, a
component that gets executed before the C compiler. The preprocessor does
a textual replacement of all macro definitions with the expression they are
defined as. So, whenever the preprocessor sees INT_MAX in your program, it
replaces it with 0x7FFFFFFF. The C compiler itself will never see INT_MAX.

This textual replacement must be done very carefully: for instance, this
is a valid, if needlessly verbose, definition of INT_MIN:

#define INT_MIN -1 ^ 0x7FFFFFFF



Lecture 19: Data Structures in C 4

Then imagine that later in the program we wrote INT_MIN / 256, which
ought to be equal to −231/28 = −223 = −16777216. This would get ex-
panded by the C preprocessor language to -1 ^ 0x7FFFFFFF / 256, which
the compiler would happily treat as -1 ^ (0x7FFFFFFF / 256), which is
−8388608. The problem is that the preprocessor doesn’t know or care about
the order of operations in C: it’s just blindly substituting text. Parentheses
would fix this particular problem:

#define INT_MIN (-1 ^ 0x7FFFFFFF)

The best idea is to use #define sparingly and mostly get your macro def-
initions from standard libraries. The definitions INT_MIN and INT_MAX are
already provided by the standard C library <limits.h>.

4 Conditional compilation

Another very powerful but very-easy-to-get-wrong feature of the macro
language is conditional compilation. Based on whether a symbol is defined or
not, the preprocessor can choose to ignore a whole section of text or choose
between separate sections of text. This is used in a couple of different ways.
Sometimes we use #ifndef (if not defined) to make sure we’re not defining
something twice:

#ifndef INT_MIN
#define INT_MIN (~0x7FFFFFFF)
#endif

We can also use #ifdef and #else to pick between different pieces of
code to define. The code below is very different from C0/C code with a
condition if (version_one) statement, because only one of the two print
statements below will ever even get compiled. The other one will be cut
out of the program by the preprocessor before the compiler even sees it!

#ifdef VERSION_ONE
printf("This is version 1\n");
#else
printf("This is not version 1\n");
#endif

One interesting thing about this example is that we don’t care what
VERSION_ONE is defined to be: we’re just using the information about whether
it is defined or not. We’ll use the DEBUG symbol in some of our C programs
to include certain pieces of code only when DEBUG is defined.



Lecture 19: Data Structures in C 5

#ifdef DEBUG
printf("Some helpful debugging information\n");
#endif

5 Macro functions

A more powerful version of macro definition is the macro function. For ex-
ample:

#define MULT(x,y) ((x)*(y))

Using parentheses defensively is very important here, because otherwise
the precedence issues we described before will only get worse. The only
place we’ll use macro functions in 15-122 is to define something like C0
contracts in C. The macro functions ASSERT, REQUIRES, and ENSURES turn
into assertions when the DEBUG symbol is present, but otherwise they are
replaced by ((void)0), which just tells the compiler to do nothing at all.

#ifndef DEBUG

#define ASSERT(COND) ((void)0)
#define REQUIRES(COND) ((void)0)
#define ENSURES(COND) ((void)0)

#else

#define ASSERT(COND) assert(COND)
#define REQUIRES(COND) assert(COND)
#define ENSURES(COND) assert(COND)

#endif

The code above isn’t something you have to write yourself: it’s pro-
vided for you in the file contracts.h that will be in the lib directory of all
of our C projects in 15-122. Therefore, we write:

#include "lib/contracts.h"

in order to include these macro-defined contracts in our programs. When
we use quotes instead of angle brackets for #include, as we do here, it just
means that we’re looking for a library we wrote ourselves and are using lo-
cally, not a standard library that we expect the compiler will find wherever
it stores its standard library interfaces.



Lecture 19: Data Structures in C 6

6 C0 contracts in C

There’s no assertion language in C: everything starting with //@ and every-
thing written inside /*@... @*/ is just a treated as a comment and ignored.
We’ll still write C0-style contracts in our interfaces, but those contracts are
now just comments, good for documentation, but not for runtime checking.

All contracts, including preconditions and postconditions, have to be
written inside of the function if we want them to be checked at runtime.

int absval(int x) {
REQUIRES(x > INT_MIN);
int res = x < 0 ? -x : x;
ENSURES (res >= 0);
return res;

}

There’s not a good replacement for loop invariants in C; they just have
to be replaced with careful use of ASSERT.

7 Memory allocation

In C0, we allocate pointers of a particular type; in C, we allocate pointers of
a particular size: the preprocessor function sizeof takes a type and returns
the number of bytes in this type, and it is this size that we pass to the alloca-
tion function. The default way of allocating a struct or integer (or similar)
in C is to use the function malloc, provided in the standard <stdlib.h>
library.

C0: int* x = alloc(int);
C: int* x = malloc(sizeof(int));

One quirk with malloc is that it does not initialize memory, so deref-
erencing x before storing some integer into x could return an arbitrary
value. (The computer is able to allocate memory slightly more efficiently if
it doesn’t have to initialize that memory.) This is different from C0, where
allocated memory was always initialized to a default value: NULL for point-
ers, 0 for integers, "" for strings, and so on.

Another quirk with malloc is that it is allowed to return NULL. Ulti-
mately there is only a finite amount of memory accessible to the computer,
and malloc will return NULL when there is no memory left to allocate.
Therefore, we will usually use a 15-122 library "lib/xalloc.h", which
provides the function xmalloc. The xmalloc function provided by this



Lecture 19: Data Structures in C 7

library works the same way malloc does, except that the result is sure not
to be NULL.

C: int* x = xmalloc(sizeof(int)); // x is definitely not NULL

By replacing allocwith xmalloc and sizeof, we can now translate our
test.c0 file into test.c. The series of print statements has been replaced
by a single function printf.

1 #include <stdbool.h>
2 #include <stdlib.h>
3 #include <stdio.h>
4 #include <assert.h>
5 #include "lib/xalloc.h"
6

7 int main() {
8 struct point2d* P = xmalloc(sizeof(struct point2d));
9 P->x = -15;

10 P->y = 0;
11 P->y = P->y + absval(P->x * 2);
12 assert(P->y > P->x && true);
13 printf("x coord: %d\n", P->x);
14 return 0;
15 }

We needed an extra line, P->y = 0;, that wasn’t present in the original
file to cope with the fact that the malloc-ed y field isn’t initialized to 0 the
way it was in C0.

8 Compiling

Our code won’t actually compile yet, but we can try to compile it now
that we’ve translated both simple.c and test.c. When we call gcc, the C
compiler, we’ll give it a long series of flags:

% gcc -Wall -Wextra -Wshadow -Werror -std=c99 -pedantic -g -DDEBUG ...

The flags -Wall, -Wextra, and -Wshadow represent a bunch of optional
compilation Warnings we want to get from the compiler, and -Werror
means that if we get any warnings the code should not be compiled. The
flag -std=c99 means that the version of C we are using is the one that was
written down as the C99 standard, a standard we want to adhere to in a
-pedantic way.



Lecture 19: Data Structures in C 8

The flag -g keeps information in the compiled program which will
be helpful for the valgrind utility tool (see below after the discussion of
free). The flag -DDEBUG means that we want the preprocessor to run with
the DEBUG symbol Defined. As we talked about before, this means that con-
tracts will actually be checked at runtime: -DDEBUG is the C version of the
-d flag for the C0 compiler and interpreter.

9 Separate Compilation

If we try to compile the translated C files we have so far, it won’t work:

% gcc ...all those flags... lib/*.c simple.c test.c
test.c: In function "main":
test.c:8:38: error: invalid application of sizeof to incomplete type...

struct point2d* P = xmalloc(sizeof(struct point2d));
^

test.c:10:3: error: implicit declaration of function absval...
P->y = P->y + absval(P->x * 2);
^

If compiling C worked like compiling C0, test.c would be able to see the
interface from simple.c, which includes the definition of struct point2d
and the type of absval, because simple.c came ahead of test.c on the
command line. However, C doesn’t work this way: every C file is compiled
separately from all the other C files.

To get our code to compile, we want to split up the simple.c file into
two parts: the interface, which will go in the header file simple.h, and
the implementation, which will stay in simple.c and will #include the
interface "simple.h". Then, we can also #include the simple interface in
test.c.

This is actually a good thing from the perspective of respecting the in-
terface: test.c will have access to the interface in simple.h, but couldn’t
accidentally end up relying on extra things defined in simple.c.



Lecture 19: Data Structures in C 9

9.1 Interface: simple.h

In addition to containing the interface from simple.c0, the header file con-
taining the simple.h interface, like all C header files, needs to use #ifndef,
#define, and #endif. These three preprocessor declarations, in combina-
tion, make sure that we can only end up including this code one time, even
if we intentionally or accidentally write #include "simple.h" more than
once.

1 #ifndef _SIMPLE_H_

2 #define _SIMPLE_H_

3

4 int absval(int x)
5 /*@requires x >= INT_MIN; @*/
6 /*@ensures \result >= 0; @*/ ;
7

8 struct point2d {
9 int x;

10 int y;
11 };
12

13 #endif

9.2 Implementation: simple.c

The C file will include both the necessary libraries and the interface. The
implementation should always #include the interface.

1 #include <limits.h>
2 #include "lib/contracts.h"
3 #include "simple.h"
4

5 int absval(int x) {
6 REQUIRES(x > INT_MIN);
7 int res = x < 0 ? -x : x;
8 ENSURES(res >= 0);
9 return res;

10 }



Lecture 19: Data Structures in C 10

9.3 Main file: test.c

1 #include <stdbool.h>
2 #include <stdlib.h>
3 #include <stdio.h>
4 #include <assert.h>
5 #include "lib/xalloc.h"
6 #include "simple.h"
7

8 int main() {
9 struct point2d* P = xmalloc(sizeof(struct point2d));

10 P->x = -15;
11 P->y = 0;
12 P->y = P->y + absval(P->x * 2);
13 assert(P->y > P->x && true);
14 printf("x coord: %d\n", P->x);
15 return 0;
16 }

At this point, compilation will proceed without errors.

10 Memory leaks

Unlike C0, C does not automatically manage memory. Thus, programs
have to free the memory they allocate explicitly; otherwise, long-running
or memory-intensive programs are likely to run out of space. For that, the
C standard library provides the function free, declared with

void free(void* p);

The restrictions as to its proper use are

1. It is only called on pointers that were returned from malloc or calloc
(possibly indirectly via the xalloc library).1

2. After memory has been freed, it is no longer referenced by the pro-
gram in any way.

Freeing memory counts as referencing it, so the restrictions imply that you
should not free memory twice. And, indeed, in C the behavior of freeing
memory that has already been freed is undefined and may be exploited

1or realloc, which we have not discussed.



Lecture 19: Data Structures in C 11

by an adversary. If these rules are violated, the result of the operations is
undefined. The valgrind tool will catch dynamically occurring violations
of these rules, but it cannot check statically if your code will respect these
rules when executed.

Managing memory in your C programs means walking the narrow way
between two pitfalls: all allocated memory should be freed after it is no
longer used, but no allocated memory should be referenced after it is freed!
Falling into the first pit causes memory leaks, which cause long-running pro-
grams to run out of unallocated memory. Falling into the second one causes
undefined, i.e. unpredictable, behavior.

The golden rule of memory management in C is

You allocate it, you free it!

By inference, if you didn’t allocate it, you are not allowed to free it! But
this rule is tricky in practice, because sometimes we do need to transfer
ownership of allocated memory so that it “belongs” to a data structure.

Binary search trees are one example. When client code adds an element
to the binary search tree, is it in charge of freeing that element, or should
the library code free it when it is removed from the binary search tree?
There are arguments to be made for both of these options. If we want the
library code for the BST to “own” the reference, and therefore be in charge
of freeing it, we can write the following function that frees a binary search
tree, given a function pointer that frees elements. The library can allow this
function pointer to be NULL: if it’s NULL the library code doesn’t own the
elements, and doesn’t do anything to them. We also show the function that
frees a dictionary implemented as a binary search tree.

void free_fn(void* x);

void tree_free(tree *T, free_fn *Fr) {
REQUIRES(is_bst(T));
if (T != NULL) {
if (Fr != NULL) (*Fr)(T->data);
tree_free(T->left, Fr);
tree_free(T->right, Fr);
free(T);

}
return;

}



Lecture 19: Data Structures in C 12

void dict_free(dict* B, free_fn *Fr) {
REQUIRES(is_dict(B));
tree_free(B->root, Fr);
free(B);
return;

}

We should never free elements allocated elsewhere; rather, we should
use the appropriate function provided in the interface to free the memory
associated with the data structure. Freeing a data structure, for instance by
calling free(T), is something the client itself cannot do reliably, because
it would need to be privy to the internals of the data structure implemen-
tation. If the client called free(B) on a dictionary it would only free the
header; the tree itself would be irrevocably leaked memory.

11 Detecting memory mismanagement

Memory leaks can be quite difficult to detect by inspecting the code. To
discover whether memory leaks may have occurred at runtime, we can use
the valgrind tool.

For example, our test.c program that allocates but does not free mem-
ory, like this,

int main() {
struct point2d* P = xmalloc(sizeof(struct point2d));
P->x = -15;
P->y = 0;
P->y = P->y + absval(P->x * 2);
assert(P->y > P->x && true);
printf("x coord: %d\n", P->x);
return 0;

}

gets a report from valgrind like this, indicating a memory leak:

% valgrind ./a.out
...
HEAP SUMMARY:
==40284== in use at exit: 8 bytes in 1 blocks
==40284== total heap usage: 1 allocs, 0 frees, 8 bytes allocated
==40284==
==40284== LEAK SUMMARY:



Lecture 19: Data Structures in C 13

==40284== definitely lost: 8 bytes in 1 blocks
...

If we add code to free P just before the return statement, we get a clean
bill of health from valgrind:

...
HEAP SUMMARY:
==41495== in use at exit: 0 bytes in 0 blocks
==41495== total heap usage: 1 allocs, 1 frees, 8 bytes allocated
==41495==
==41495== All heap blocks were freed --- no leaks are possible
...

If, on the other hand, we free P at the wrong point in our code, like this:

int main() {
struct point2d* P = xmalloc(sizeof(struct point2d));
...
free(P);
printf("x coord: %d\n", P->x);
return 0;

}

valgrind detects that we have referenced memory after freeing it (this is
our second pitfall):

...
==43895== Invalid read of size 4
==43895== at 0x400886: main (test.c:25)
==43895== Address 0x51f6040 is 0 bytes inside a block of size 8 free’d
...

valgrind is capable of flagging errors in code that didn’t appear to have
any errors when run without valgrind. It slows down execution, but if
at all feasible you should test all your C code in this manner to uncover
memory problems. For best error messages, you should pass the -g flag to
gcc which preserves some correlation between binary and source code.


	Running Example
	A simple interface simple.c0
	A simple test program: test.c0

	Introducing the preprocessor language
	Macro definitions
	Conditional compilation
	Macro functions
	C0 contracts in C
	Memory allocation
	Compiling
	Separate Compilation
	Interface: simple.h
	Implementation: simple.c
	Main file: test.c

	Memory leaks
	Detecting memory mismanagement

