
Lecture 24
Search in Graphs

15-122: Principles of Imperative Computation (Spring 2018)
Frank Pfenning, André Platzer, Rob Simmons,

Penny Anderson, Iliano Cervesato

In this lecture, we will discuss the question of graph reachability: given two
vertices v and w, does there exist a path from v to w?

This maps as follows onto the learning goals for this course:

Computational Thinking: We continue learning about graphs, and specif-
ically about paths in a graph. An important question is whether there
exists a path between two given nodes. A related problem is to pro-
duce this path (if it exists).

Algorithms and Data Structures: We explore two classic approaches to
answering these questions: depth-first search and breadth-first search.
Both rely on the need to remember what we have done already, and
to go back and try something else if we get stuck.

Programming: We give two implementations of depth-first search, one re-
cursive that uses the call stack of C to remember what we have done,
and the other iterative that uses an explicit stack for that purpose. We
also see that breadth-first search is the variant of the latter where a
queue is used instead of a stack.

LECTURE NOTES c© Carnegie Mellon University 2018

Lecture 24: Search in Graphs 2

As a reminder, we are working with the following minimal graph in-
terface, which allows us to query only the size (number of vertices) of the
graph and the existence of an edge between two given vertices. We will be
implementing our search in terms of this interface.

typedef unsigned int vertex;
typedef struct graph_header* graph_t;

graph_t graph_new(unsigned int numvert);
void graph_free(graph_t G);
unsigned int graph_size(graph_t G);

bool graph_hasedge(graph_t G, vertex v, vertex w);
//@requires v < graph_size(G) && w < graph_size(G);

void graph_addedge(graph_t G, vertex v, vertex w);
//@requires v < graph_size(G) && w < graph_size(G);
//@requires v != w && !graph_hasedge(G, v, w);

1 Paths in Graphs

A path in a graph is a sequence of vertices where each vertex is connected
to the next by an edge. That is, a path is a sequence

v0, v1, v2, v3, . . . , vl

of some length l ≥ 0 such that there is an edge from vi to vi+1 in the graph
for each i < l.

Lecture 24: Search in Graphs 3

For example, all of the following are paths in the graph above:

A−B − E − C −D
A−B −A
E − C −D − C −B
B

The last one is a special case: The length of a path is given by the number of
edges in it, so a node by itself is a path of length 0 (without following any
edges). Paths always have a starting vertex and an ending vertex, which
coincide in a path of length 0. We also say that a path connects its end-
points.

The graph reachability problem is to determine if there is a path connect-
ing two given vertices in a graph. If we know the graph is connected, this
problem is easy since one can reach any node from any other node. But we
might refine our specification to request that the algorithm return not just
a boolean value (reachable or not), but an actual path. At that point the
problem is somewhat interesting even for connected graphs. In complexity
theory it is sometimes said that a path from vertex v to vertex w is a certifi-
cate or explicit evidence for the fact that vertex w is reachable from another
vertex v. It is easy to check whether the certificate is valid, since it is easy
to check if each node in the path is connected to the next one by an edge. It
is more difficult to produce such a certificate.

For example, the path

A−B − E − C −D

is a certificate for the fact that vertex D is reachable from vertex A in the
above graph. It is easy to check this certificate by following along the path
and checking whether the indicated edges are in the graph.

In most of what follows we are not concerned with finding the path, but
only with determining whether one exists. It is not difficult to see how to
extend the algorithms we discuss to compute the path as well.

2 Depth-First Search

The first algorithm we consider for determining if one vertex is reachable
from another is called depth-first search.

Let’s try to work our way up to this algorithm. Assume we are trying to
find a path from u to w. We start at u. If it is equal to w we are done, because

Lecture 24: Search in Graphs 4

w is reachable by a path of length 0. If not we pick an arbitrary edge leaving
u to get us to some node v. Now we have “reduced” the original problem
to the one of finding a path from v to w.

The problem here is of course that we may never arrive at w even if
there is a path. For example, say we want to find a path from A to D in our
earlier example graph.

We can go A − B − E − A − B − E − · · · without ever reaching D (or we
can go just A−B −A−B − · · ·), even though there exists a path.

We need to avoid repeating nodes in the path we are exploring. A cycle
is a path of length 1 or greater that has the same starting and ending point.
So another way to say we need to avoid repeating nodes is to say that we
need to avoid cycles in the path. We accomplish this by marking the nodes
we have already considered so when we see them again we know not to
consider them again.

Let’s go back to the earlier example and play through this idea while
trying to find a path from A to D. We start by marking A (indicated by hol-
lowing the circle) and go to B. We indicate the path we have been following
by drawing a double-line along the edges contained in it.

When we are at B we mark B and have three choices for the next step.

1. We could go back to A, but A is already marked and therefore ruled
out.

2. We could go to E.

Lecture 24: Search in Graphs 5

3. We could go to C.

Say we pick E. At this point we have again three choices. We might con-
sider A as a next node on the path, but it is ruled out because A has already
been marked. We show this by dashing the edge from A to E to indicate
it was considered, but ineligible. The only possibility now is to go to C,
because we have been at B as well (we just came from B).

From C we consider the link to D (before considering the link to B) and we
arrive at D, declaring success with the path

A−B − E − C −D

which, by construction, has no cycles.
There is one more consideration to make, namely what we do when we

get stuck. Let’s reconsider the original graph

and the goal to find a path from E to B. Let’s say we start E − C and then
C −D. At this point, all the vertices we could go to (which is only C) have
already been marked! So we have to backtrack to the most recent choice
point and pursue alternatives. In this case, this could be C, where the only
remaining alternative would be B, completing the path E −C −B. Notice
that when backtracking we have to go back to C even though it is already
marked.

Depth-first search is characterized not only by the marking, but also
that when we get stuck we always return to our most recent choice and

Lecture 24: Search in Graphs 6

follow a different path. When no other alternatives are available, we back-
track further. Let’s consider the following slightly larger graph, where we
explore the outgoing edges using the alphabetically last label first. We will
trace the search for a path from A to B.

We write the current node we are visiting on the left and on the right a
stack of nodes we have to return to when we backtrack. For each of these
we also remember which choices remain (in parentheses). We annotate
marked nodes with an asterisk, which means that we never pick them as
the next node to visit.

For example, going from step 4 to step 5 we do not consider E∗ but go
to D instead. We backtrack when no unmarked neighbors remain for the
current node. We are keeping the visited nodes on a stack so we can easily
return to the most recent one. The stack elements are separated by | and
the lists of neighbors are wrapped in parentheses, e.g., (B,A∗).

Step Current Stack Remark

1 A
2 E A∗ (B)
3 C E∗ (B,A∗) | A∗ (B)
4 G C∗ (E∗, D) | E∗ (B,A∗) | A∗ (B) Backtrack
5 D C∗ () | E∗ (B,A∗) | A∗ (B)
6 F D∗ (C∗) | C∗ () | E∗ (B,A∗) | A∗ (B) Backtrack
7 B E∗ (A∗) | A∗ (B) Goal Reached

When we think about implementing this using an adjacency list repre-
sentation, it is apparent that we need some way of retrieving the neighbors
of a given vertex v (those vertices that are directly connected to v by edges).
Since this isn’t directly possible with our minimal interface, we will iterate
through all the vertices of the graph, and for each vertex w query whether
the edge (v, w) exists in the graph.

Lecture 24: Search in Graphs 7

2.1 Recursive Depth-First Search

Now we can easily write the depth-first search code recursively, letting the
call stack keep track of everything we need for backtracking.

1 bool dfs_helper(graph_t G, bool *mark, vertex start, vertex target) {
2 REQUIRES(G != NULL && mark != NULL);
3 REQUIRES(start < graph_size(G) && target < graph_size(G));
4 REQUIRES(!mark[start]);
5

6 mark[start] = true; // mark start as seen
7

8 if (start == target) return true;
9

10 for (vertex v = 0; v < graph_size(G); v++) {
11 if (graph_hasedge(G, start, v)) {
12 // This v is one of start’s neighbors
13 if (!mark[v] && dfs_helper(G, mark, v, target))
14 return true;
15 }
16 return false;
17 }

We’ve named the function dfs_helper because the user of the search should
not have to worry about supplying the array of marks. Instead the user
calls the function dfs, below, which creates the marks and passes them to
the recursive helper function.

19 bool dfs(graph_t G, vertex start, vertex target) {
20 REQUIRES(G != NULL);
21 REQUIRES(start < graph_size(G) && target < graph_size(G));
22

23 bool mark[graph_size(G)]; // Stack-allocated
24 for (vertex i = 0; i < graph_size(G); i++)
25 mark[i] = false;
26 return dfs_helper(G, mark, start, target);
27 }

What is the cost of recursive DFS for a graph with v vertices and e
edges? The function dfs has an initialization cost of O(v) in lines 23–25,
plus the cost of dfs_helper. Line 4, and the fact that marks are never reset,
ensures that this function will be called at most v times. The loop starting
at line 10 runs exactly v times. Using an adjacency matrix implementation,

Lecture 24: Search in Graphs 8

the call to graph_hasedge would take constant time. Thus, the run time of
dfs_helper, and therefore of dfs, is O(v2).

It should be noted that an interface that provides a function that returns
the neighbors of a node, coupled with an adjacency list based library, which
would implement it as a constant-time function, would give us an O(e)
worst case complexity, which is comparable to our current O(v2) for dense
graphs and better for sparse graphs. Specifically, assume the adjacency list
library provides the function get_neighbors(G,w) which returns a linked
list of the neighbors of vertex w in G. Then we would replace lines 10–11
above with

10 for (p = get_neighbors(G, start); p != NULL; p = p->next) {
11 v = p->vert;

Altogether, the body of this loop would be called at most 2e times — for
each edge (v1, v2) in G, once when start is v1 and once when start is v2
— thereby giving us an O(e) cost for dfs.

2.2 Depth-First Search with an explicit stack

When scrutinizing the above example, we notice that the sophisticated data
structure of a stack of nodes with their adjacency lists was really quite un-
necessary for DFS. The recursive implementation is simple and elegant, but
its effect is to make the data management more complex than necessary: all
we really need for backtracking is a stack of nodes that have been seen but
not yet considered.

This can all be simplified by making the stack explicit. In that case there
is a single stack with all the nodes on it that we still need to look at. (In the
sample code, we use a stack specialized to hold things of type vertex just
to keep the code simple.)

Step Current Neighbors New stack
0 (A∗)
1 A∗ (E,B) (E∗, B∗)
2 E∗ (C,B∗, A∗) (C∗, B∗)
3 C∗ (G,E∗, D) (G∗, D∗, B∗)
4 G∗ (C∗) (D∗, B∗)
5 D∗ (F,C∗) (F ∗, B∗)
6 F ∗ (D∗) (B∗)
7 B∗ (E∗, A∗) ()

Lecture 24: Search in Graphs 9

1 bool dfs_explicit_stack(graph_t G, vertex start, vertex target) {
2 REQUIRES(G != NULL);
3 REQUIRES(start < graph_size(G) && target < graph_size(G));
4

5 if (start == target) return true;
6

7 // Mark array initially containing only start
8 bool mark[graph_size(G)]; // Stack-allocated
9 for (vertex i = 0; i < graph_size(G); i++)

10 mark[i] = false;
11 mark[start] = true;
12

13 // Work list initially containing only start
14 istack_t S = stack_new();
15 push(S, start);
16

17 while(!stack_empty(S)) {
18 // Loop invariants to prove correctness go here
19 vertex v = pop(S); // v is the current node
20 for (vertex w = 0; w < graph_size(G); w++) {
21 if (graph_hasedge(G, v, w)) { // w is a neighbor of v
22 if (w == target) {
23 stack_free(S);
24 return true; // Success!
25 }
26 if (!mark[w]) { // w was not seen before
27 mark[w] = true; // Mark it as known
28 push(S, w); // Add to work list
29 }
30 }
31 }
32 }
33 stack_free(S);
34 return false; // Failure
35 }

We mark the starting node and push it on the stack. Then we iteratively
pop the stack and examine each neighbor of the node we popped. If the
neighbor is not already marked, we push it on the stack to make sure we
look at it eventually. If the stack is empty then we’ve explored all possibili-

Lecture 24: Search in Graphs 10

ties without finding the target, so we return false.

While convincing, this explanation comes short of a proof that our im-
plementation is correct, i.e., that it returns true when there is a path be-
tween start and target and returns false otherwise. We will now de-
velop a more solid argument, although we will stop short of a formal proof.
The function dfs_explict_stack returns in exactly three places. The first
is on line 5, when start is equal to target. By definition, there is a degen-
erate path between these two nodes in this case.

The other two places where the function returns, lines 24 and 34, have
us go through loops. To reason about loops, we need to develop loop in-
variants that we will squeeze in the placeholder on line 18. We start with
the return statement on line 24: by the conditional on line 21, we know that
w (which is equal to target by line 22) is a neighbor of vertex v, but how
do we know that there is a path from start to v? Two invariants will prove
helpful here:

1. Every marked vertex (i.e., a vertex u such that mark[u] == true) is con-
nected to start.

2. Every vertex in the stack is marked.

These two invariants hold initially since start is the only marked vertex
and the only item in the stack before the loop is run the first time. They
are preserved by an arbitrary iteration of the loop since only neighbors of v
(which is assumed to be reachable from start) are marked on line 27 and
they are immediately pushed on the stack on line 28. Therefore, if the loop
exits at line 24, we know that there is a path from start to target.

These two invariants are not sufficient to prove that there is no path
from start to target if the function returns false on line 34. For this, we
need a new concept and a new invariant involving it. The new concept is
that of frontier of the search. The frontier is a set of vertices that we know
are connected to start but that we have not explored yet. At any point in
the loop on lines 17–32, the frontier is the contents of the stack. The new
invariant is the following:

3 Every path from start to target passes through a vertex in the frontier.

It is clearly true initially when the stack (the frontier) only contains start.
It is preserved by the loop because intuitively a frontier element is replaced
by all of its neighbors (a more formal argument involves reasoning about
the fact that some of these neighbors may have already been explored).

Lecture 24: Search in Graphs 11

More interesting is why this invariant allows us to prove that there is no
path to target if the function returns on line 34: for this to happen, we
must have exited the loop in lines 17–32, which entails that the negation
of its loop guard is true: the stack (our frontier) is empty. By our third
invariant (which still holds at this point), every path from start to target
must go through a vertex in the frontier. But the frontier is empty, so it
contains no vertex through which such a pass can go: thus, there cannot
be any path from start to target. Only in this way can the invariant be
true if the frontier is empty: if all of zero paths from start to target pass
through one of the (zero) vertices in the empty frontier.

The complexity considerations we developed for the recursive version
of DFS apply here as well — possibly more explicitly. Assuming an adja-
cency matrix implementation, the above code has cost O(v2): each vertex
can be pushed on the stack at most once so that the outer loop runs at most
v times, and the inner loops always runs v time. Assuming a constant-cost
function that returns the neighbors of a node, it can be modified to have
cost O(e), exactly as discussed earlier.

3 Breadth-First Search

The iterative DFS algorithm managed its agenda, i.e., the list of nodes it
still had to look at, using a stack. But there’s no reason to insist on a stack
for that purpose. What happens if we replace the stack by a queue? All
of a sudden, we will no longer explore the most recently found neighbor
first as in depth-first search, but, instead, we will look at the oldest neigh-
bor first. This corresponds to a breadth-first search where you explore the
graph layer by layer. So BFS completes a layer of the graph before pro-
ceeding to the next layer. The code for that and many other interesting
variations of graph search can be found on the course web page.

Here’s an illustration using our running example of search for a path
from A to B in the graph

Lecture 24: Search in Graphs 12

Step Current Neighbors New queue
0 (A∗)
1 A∗ (E,B) (E∗, B∗)
2 E∗ (B∗, A∗, C) (B∗, C∗)
3 B∗ (E∗, A∗) (C∗)

We find the path much faster this way. But this is just one example. Try
to think of another search in the same graph that would cause breadth-first
search to examine more nodes than depth-first search would.

The code looks the same as our iterative depth-first search, except for
the use of a queue instead of a stack. Therefore we do not include it here.
You could write it yourself, and if you have difficulty, you can find it in
the code folder that goes with this lecture. Note that our correctness and
complexity analysis for DFS never relied on using a stack. Thus, it remain
sound once we swap the stack for a queue. Correctness also hold for any
other implementation of work list, but complexity may need to be revis-
ited if these implementation cannot provide constant-time insertion and
retrieval operations.

4 Conclusion

Breadth-first and depth-first search are the basis for many interesting algo-
rithms as well as search techniques for artificial intelligence.

One potentially important observation about breadth-first versus depth-
first search concerns search when the graph remains implicit, for instance
in game search. In this case there might be infinite paths in the graph. Once
embarked on such a path depth-first search will never backtrack, but will
pursue the path endlessly. Breadth-first search, on the other hand, since
it searches layer by layer, is not subject to this weakness (every node in a
graph is limited to a finite number of neighbors). In order to get some ben-
efits of both techniques, a technique called iterative deepening is sometimes
used.

	Paths in Graphs
	Depth-First Search
	Recursive Depth-First Search
	Depth-First Search with an explicit stack

	Breadth-First Search
	Conclusion

