
15-122: Principles of Imperative Computation Spring 2018

Recitation 1: C0 Basics 11 January

Administrivia and general advice

Welcome to 15-122 recitation! Take a moment to �ll in the particulars for this section, so that you know
which section you're in as well as your TA's name and email.

Section:

TA's Name:

TA's Email:

Basic syntax for C0 programs

Semicolons: Statements are terminated by semicolons. At the end of most lines, you'll need a semi-
colon. (Exceptions are if statements, function de�nitions, use statements, and loops.)

Types: Some of the types in C0 are:

� int: Integers x, where −231 ≤ x < 231.

� bool: Either true or false. Useful for conditionals, loops, and more.

� a || b is true if either a or b are true

� a && b is true if either a and b are true

� !a is true if a is false

� x < y, x <= y, x > y, x >= y all compare two integers x and y and return a bool

� x == y and x != y compare most C0 types and return a bool. You can't compare strings
this way, though, and it's usually bad style if you're writing code like e == true.

� string: An ordered sequence of characters like "Hello!"

� char: A single character, like 'c', 'z', 'F', or '?'.

Boolean operators: Both && and || are short-circuiting in�x operators.

They are in�x (like other operators +, −, %, etc.) because they take two arguments and the operator
is placed between the two arguments. The compiler mentions the word "in�x operator" if you make a
mistake with them, so it's good to be aware of this name for them.

They are short-circuiting because, if the expression to the left of && evaluates to false or if the expression
to the left of || evaluates to true, then the expression to the right will never get executed. This means
that, even though evaluating the expression y/x == 0 will cause an error if x is zero, evaluating the
expression x == 0 || y/x == 0 can never cause an error.

Locals: locals (confusingly also called �local variables,� �assignable variables,� �assignables,� or �vari-
ables�) are explicitly declared along with their type. Locals can never change type after they are declared.

1 int x = 5; // x is initialized to 5
2 int y; // We can’t use y until we assign to it!
3 string str = "hello";
4 y = x + 4; // y is now equal to 9
5 x = x + 1; // x is now equal to 6
6 x = "world"; // ERROR! string and int are different types!

Conditionals: These are one way we use bool values. Here's an example of if statements in C0:

if (condition) {
//do something if condition == true

}
else if (condition2) {

//do something if condition2 == true and condition == false
}
else {

//do something if condition == false and condition2 == false
}

Loops: There are two kinds of loops in C0 � while loops and for loops.

� while loop: It takes a condition (something that evaluates to a Boolean). The loop executes until
the condition is false.

� for loop: It takes three statements separated by semicolons. Execute the �rst statement once at
the beginning of the loop, loop until the second statement (a condition) is false, and execute the
third statement at the end of each iteration.

while loop for loop

int x = 0;
while (x < 5) {

printint(x);
print("\n");
x++;

}

for (int x = 0; x < 5; x++) {
printint(x);
print("\n");

}

These two examples do the same thing. Here, the for loop is preferred but there are cases (like binary
search in an array, which we'll discuss later this semester) where while loops are cleaner.

Function de�nition: This example de�nes a function called add that takes two ints as arguments
and returns an int.

int add (int x, int y) {
return x + y;

}

Comments: Use // to start a single line comment and /* ... */ for multi-line comments. It's good
style to have a * at the beginning of each line in a multi-line comment.

Indentation and braces: Your code will still work if it's not indented well, but it's really bad style to
indent poorly. Python's indentation rules are good and you should generally follow them in C0 too. C0
uses curly braces (i.e., { and }) to denote the starts and ends of blocks, as seen above. For single-line
blocks it's possible to omit the curly braces, but that can make debugging very di�cult if you later add
in another line to the block of code. For that reason, we highly encourage you to always use braces,
even for single-line statements.

Very Bad Okay, but Risky Good

if (x == 4)
println("x is 4");

if (x == 4)
println("x is 4");

if(x == 4) {
println("x is 4");

}

Checkpoint 0

Identify and correct the syntax errors in the following code to make it valid C0:

1 #use <conio>
2

3 def fib(i):
4 if(i == 0 or i == 1){
5 return i;
6 }
7 return fib(i − 1) + fibi(i − 2)
8

9 int main():
10 for int i=0; i < 10; i++
11 printint(fib(i))
12 print(\n)
13 return 0

Contracts

There are 4 types of annotations in C0 (for convenience, we're using exp here to mean any Boolean
expression):

Annotation Checked

//@requires exp; before function execution
//@ensures exp; before function returns
//@loop_invariant exp; before the loop condition is checked
//@assert exp; wherever you put it in the code

There are certain special variables and functions you have access to only in annotations. One of these
is \result . It can be used only in @ensures statements and it will give you the return value of the
function. (There are other such variables/functions that we'll get to later in the semester.)

To help you develop an intuition about contracts, here are some explanations of the di�erent kinds of
annotations:

� @requires: For checking

� @ensures: For checking

Allow use of the special expression

� @loop_invariant: We can only write these immediately after the beginning of a while loop or
for loop.

When are these checked? .

� @assert: Assertion statements don't play the special role in reasoning that @requires, @ensures,
and @loop_invariant statements do. They can be very helpful for debugging code and summa-
rizing what you know, especially after a loop.

Checkpoint 1

Recall lab 1. What command would you compile with to enable contract checking in a �le named
fastpow.c0?

prompt>

Proving the correctness of the mystery function

We use contracts to both test our code and to logically reason about code. With contracts, careful
reasoning and good testing both help us to be con�dent that our code is correct.

Here's a di�erent way of looking at the mystery function from lecture. Once we have loop invariants for
the mystery function, we can view the whole thing as a control �ow diagram:

The circle labeled 1 is a of the function, and the circles labeled 2 and 3 are
. The circles labeled 4 and 5 just capture information we get from the result

of the loop guard (or loop condition), but we might write 4 as an statement.

To prove this function correct, we need to reason about the two pieces of code (pieces that this diagram
hides in the two cloud-bubbles) to ensure that our contracts never fail:

� When we reason about the upper code bubble, we assume that is true before the code
runs and show that and are true afterwards.

� When we reason about the lower code bubble, we assume , , and are true
before the code runs and show that and are true afterwards.

� To reason that the returned value r is equal to xy, we combine the information from circles
and to conclude that e = 0. Together with the information in circle ,

this implies that r = xy.

In addition, we have to reason about termination: every time the lower code bubble runs, the value e
gets strictly smaller, because e/2 < e for every e > 0, and the loop invariant ensures e never becomes
negative.

To summarize, in general there are four steps for proving the correctness of a function with one loop
using loop invariants:

�

�

�

�

Preservation of loop invariants

Showing that a loop invariant is preserved can be a bit confusing: we need to assume that the loop
invariant, like e >= 0 or r * POW(b,e) == POW(x,y) is true just before we start executing the body
of the loop (it is checked just before the loop guard), and use this information (together with the
knowledge that the loop guard evaluated to true) to show that it is also true at the end of the loop
(just before the loop guard is evaluated again). We do this relative to an arbitrary iteration of the loop.

1 while (e > 0)
2 //@loop_invariant e >= 0;
3 //@loop_invariant r * POW(b, e) == POW(x, y);
4 {
5 r = r * b;
6 e = e − 1;
7 b = b;
8 }

When an arbitrary loop begins, we know and

.

After an arbitrary iteration of the loop, we use primed values to represent the new values in terms of the
old ones:

b′ =

e′ =

r′ =

We need to show that

This is true because

This terminates because

Because we haven't changed any loop invariants, the rest of the correctness proof for exponentiation
is the same as it was in class. By keeping the loop invariant the same, we still have a proven-correct
function, even though we tore out loop body and replaced it with a di�erent (and less e�cient) one!

