Recitation 3: Function Family Reunion

Big-O definition

The definition of big- O has a lot of mathematical symbols in it, and so can be very confusing at first. Let's familiarize ourselves with the formal definition and get an intuition behind what it's saying.
$O(g(n))$ is a set of functions, where $f(n) \in O(g(n))$ if and only if:
there is some \qquad and some \qquad
such that for all \qquad , \qquad .

Although it isn't technically correct set notation, it is also common to write $f(n)=O(g(n))$.

Big-O intuition

To the left of n_{0}, the functions can do anything. To its right, $c * g(n)$ is always greater than or equal to $f(n)$.

Intuitively, $O(g(n))$ is the set of all functions that $g(n)$ can outpace in the long run (with the help of a constant multiplier). For example, n^{2} eventually outpaces $3 n \log (n)+5 n$, so $3 n \log (n)+5 n \in O\left(n^{2}\right)$. Because we only care about long run behavior, we generally can discard constants and can consider only the most significant term in a function.
There are actually infinitely many functions that are in $O(g(n))$: If $f(n) \in O(g(n))$, then $\frac{1}{2} f(n) \in$ $O(g(n))$ and $\frac{1}{4} f(n) \in O(g(n))$ and $2 f(n) \in O(g(n))$. In general, for any constants $k_{1}, k_{2}, k_{1} * f(n)+$ $k_{2} \in O(g(n))$.

Checkpoint 0

Rank these big-O sets from left to right such that every big-O is a subset of everything to the right of it. (For instance, $O(n)$ goes farther to the left than $O(n!$) because $O(n) \subset O(n!)$.) If two sets are the same, put them on top of each other.
$O(n!) \quad O(n) \quad O(4) \quad O(n \log (n)) \quad O(4 n+3) \quad O\left(n^{2}+20000 n+3\right) \quad O(1) \quad O\left(n^{2}\right) \quad O\left(2^{n}\right)$
$O(\log (n)) \quad O\left(\log ^{2}(n)\right) \quad O(\log (\log (n)))$

Checkpoint 1

Using the formal definition of big-O, prove that $n^{3}+300 n^{2} \in O\left(n^{3}\right)$.

Simplest, tightest bounds

Something that will come up often with big- O is the idea of a tight bound on the runtime of a function.
It's technically correct to say that binary search, which takes around $\log (n)$ steps on an array of length n, is $O(n!)$, since $n!>\log (n)$ for all $n>0$ but it's not very useful. If we ask for a tight bound, we want the closest bound you can give. For binary search, $O(\log (n))$ is a tight bound because no function that grows more slowly than $\log (n)$ provides a correct upper bound for binary search.

Unless we specify otherwise, we want the simplest, tightest bound!

Checkpoint 2

Simplify the following big-O bounds without changing the sets the represent:
$O\left(3 n^{2.5}+2 n^{2}\right)$ can be written more simply as \qquad
$O\left(\log _{10}(n)+\log _{2}(7 n)\right)$ can be written more simply as \qquad

One interesting consequence of the second result in Checkpoint 2 is that $O\left(\log _{i}(n)\right)=O\left(\log _{j}(n)\right)$ for all i and j (as long as they're both greater than 1), because of the change of base formula:

$$
\log _{i}(n)=\frac{\log _{j}(n)}{\log _{j}(i)}
$$

But $\frac{1}{\log _{j}(i)}$ is just a constant! So, it doesn't matter what base we use for logarithms in big-O notation.
When we ask for the simplest, tightest bound in big- O, we'll usually take points off if you write, for instance, $O\left(\log _{2} n\right)$ instead of the simpler $O(\log n)$.

Checkpoint 3

Give the simplest, tightest bound for the following functions:

$$
\begin{aligned}
& f(n)=16 n^{2}+5 n+2 \in \\
& g(n, m)=n^{1.5} \times 16 m \in \\
& h(x, y, z)=\max (x, y)+z^{16} \in
\end{aligned}
$$

\qquad
\qquad

Checkpoint 4

For the following two functions, determine the big-0 bound:

```
int bigO_1(int n) {
    int[] A = alloc_array(int, n);
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            A[i] += j;
        }
    }
    search(A,5);
    return A[n-1];
10}
```

```
int big0_2(int[] L, int n) {
```

int big0_2(int[] L, int n) {
int[] A = alloc_array(int, n);
int[] A = alloc_array(int, n);
for (int i = 0; i < n; i++)
for (int i = 0; i < n; i++)
A[i] = L[i];
A[i] = L[i];
for (int i = 0; i < n; i++) {
for (int i = 0; i < n; i++) {
c = n;
c = n;
while (c > 0) {
while (c > 0) {
L[i] += 122;
L[i] += 122;
c /= 4;
c /= 4;
}
}
}
}
return L[n/2];
return L[n/2];
}

```
```

