
15-122: Principles of Imperative Computation Spring 2018

Recitation 3: Function Family Reunion 25 January

Big-O de�nition

The de�nition of big-O has a lot of mathematical symbols in it, and so can be very confusing at �rst.

Let's familiarize ourselves with the formal de�nition and get an intuition behind what it's saying.

O(g(n)) is a set of functions, where f(n) ∈ O(g(n)) if and only if:

there is some and some

such that for all , .

Although it isn't technically correct set notation, it is also common to write f(n) = O(g(n)).

Big-O intuition

To the left of n0, the functions can do anything.

To its right, c ∗ g(n) is always greater than or equal to f(n).

Intuitively, O(g(n)) is the set of all functions that g(n) can outpace in the long run (with the help of a

constant multiplier). For example, n2 eventually outpaces 3n log(n) + 5n, so 3n log(n) + 5n ∈ O(n2).
Because we only care about long run behavior, we generally can discard constants and can consider only

the most signi�cant term in a function.

There are actually in�nitely many functions that are in O(g(n)): If f(n) ∈ O(g(n)), then 1
2f(n) ∈

O(g(n)) and 1
4f(n) ∈ O(g(n)) and 2f(n) ∈ O(g(n)). In general, for any constants k1, k2, k1 ∗ f(n) +

k2 ∈ O(g(n)).

Checkpoint 0

Rank these big-O sets from left to right such that every big-O is a subset of everything to the right of

it. (For instance, O(n) goes farther to the left than O(n!) because O(n) ⊂ O(n!).) If two sets are the

same, put them on top of each other.

O(n!) O(n) O(4) O(n log(n)) O(4n+ 3) O(n2 + 20000n+ 3) O(1) O(n2) O(2n)
O(log(n)) O(log2(n)) O(log(log(n)))

Checkpoint 1

Using the formal de�nition of big-O, prove that n3 + 300n2 ∈ O(n3).



Simplest, tightest bounds

Something that will come up often with big-O is the idea of a tight bound on the runtime of a function.

It's technically correct to say that binary search, which takes around log(n) steps on an array of length

n, is O(n!), since n! > log(n) for all n > 0 but it's not very useful. If we ask for a tight bound, we want

the closest bound you can give. For binary search, O(log(n)) is a tight bound because no function that

grows more slowly than log(n) provides a correct upper bound for binary search.

Unless we specify otherwise, we want the simplest, tightest bound!

Checkpoint 2

Simplify the following big-O bounds without changing the sets the represent:

O(3n2.5+2n2) can be written more simply as

O(log10(n)+log2(7n)) can be written more simply as

One interesting consequence of the second result in Checkpoint 2 is that O(logi(n)) = O(logj(n)) for

all i and j (as long as they're both greater than 1), because of the change of base formula:

logi(n) =
logj(n)

logj(i)

But 1
logj(i)

is just a constant! So, it doesn't matter what base we use for logarithms in big-O notation.

When we ask for the simplest, tightest bound in big-O, we'll usually take points o� if you write, for

instance, O(log2 n) instead of the simpler O(log n).

Checkpoint 3

Give the simplest, tightest bound for the following functions:

f(n) = 16n2+5n+2 ∈
g(n,m) = n1.5×16m ∈
h(x, y, z) = max(x, y)+z16 ∈

Checkpoint 4
For the following two functions, determine the big-O

bound:

1 int bigO_1(int n) {
2 int[] A = alloc_array(int, n);
3 for (int i = 0; i < n; i++) {
4 for (int j = 0; j < n; j++) {
5 A[i] += j;
6 }
7 }
8 search(A,5);
9 return A[n−1];
10 }

1 int bigO_2(int[] L, int n) {
2 int[] A = alloc_array(int, n);
3

4 for (int i = 0; i < n; i++)
5 A[i] = L[i];
6

7 for (int i = 0; i < n; i++) {
8 c = n;
9 while (c > 0) {
10 L[i] += 122;
11 c /= 4;
12 }
13 }
14 return L[n/2];
15 }


