
15-122: Principles of Imperative Computation Spring 2018

Recitation 5: A queue_t Interface 8 February

A Wild struct Appears

Suppose we have the following de�nitions:

struct X {
int a;
struct Y* b;

};

struct Y {
int* c;
int d;
struct X* e;

};

struct X* foo = alloc(struct X);
struct Y* bar = alloc(struct Y);

foo−>b = bar;
bar−>e = foo;

bar−>e−>a = 15;
foo−>b−>c = alloc(int);

*(bar−>c) = foo−>a * 8 + 2;
foo−>b−>d = 1000 * foo−>a + *(foo−>b−>c);

Checkpoint 0

Fill out the table above. What's the value of bar−>d? (For your own sanity, draw a picture!)

Stack and Queue Interfaces

In lecture we discussed four functions exposed by the stack interface:

� stack_new: Creates and returns a new stack

� stack_empty: Given a stack, returns true if it is empty, else false

� push: Given a stack and a string, puts the string on the top of the stack

� pop: Given a stack, removes and returns the string on the top of the stack

Similarly, we discussed four functions exposed by the queue interface:

� queue_new: Creates and returns a new queue

� queue_empty: Given a queue, returns true if it is empty, else false

� enq: Given a queue and a string, puts the string at the end of the queue

� deq: Given a queue, removes and returns the string at the beginning of the queue

Checkpoint 1

Write a function to reverse a queue using only functions from the stack and queue interfaces.

1 void reverse(queue_t Q) {

2 // Hint: Allocate a

3 // temporary data structure

4 while () {

5

6

7 }

8 while () {

9

10

11 }
12 }

Checkpoint 2

Write a recursive function to count the size of a stack. You may not destroy the stack in the process �

the stack's elements (and order) must be the same before and after calling this function.

int size(stack_t S) {

}

Checkpoint 3

Why couldn't this stack size implementation be used in contracts in C0? Hint: Contracts in C0 cannot

have side e�ects.

