
15-122: Principles of Imperative Computation Spring 2018

Recitation 14: Computing on the Edge 12 April

Graphs, Vertices, and Edges

A graph G is a set of vertices V and a set of edges E, where each edge is a pair of vertices.

For example, the graph above would be described by giving the vertex set and the edge set as in

V = {A,B,C,D,E, F,G,H, I, J,K}
E = {(A,B), (B,C), (B,E), (B,F ), (C,D), (C,E), (C,F ), (E,F ), (F,H), (H, I), (H,J), (I,K), (J,K)}

(For brevity, only edges in one direction are listed. This is okay because the graph above is undirected.)

The subgraph consisting of only vertices B, C, E, and F is called a complete graph because an edge

exists between every two of those vertices.

Checkpoint 0

Let T (n) be the number of edges in a complete graph with n vertices. Write a recursive formula for

T (n). You will need to write two expressions � one for the base case and one for the recursive case.

Checkpoint 1

Recall from lecture that we discussed two ways of representing graphs: adjacency matrices and adjacency

lists. Draw the adjacency matrix and the adjacency list for the graph above.

Checkpoint 2

In terms of |V | and |E|, give a big O bound for the graph_hasedge operation for both the adjacency

matrix and adjacency list representations.

Checkpoint 3

We call a graph sparse if it has relatively few edges and dense if it has relatively many edges. Which

representation might you want to use for a sparse graph? What about for a dense graph? Why?



Graph Search

We've discussed two algorithms for traversing a graph: depth-�rst search (DFS) and breadth-�rst search

(BFS). DFS always visits the �rst neighbor of a vertex before visiting the rest of the neighbors, whereas

BFS visits all neighbors of a vertex before continuing the search in a neighbor's neighbor.

Checkpoint 4

Assume you wish to search the above graph for vertex K starting at vertex A. List the vertices of the

graph in the order visited by DFS and BFS. Assume that the algorithms consider neighbors in alphabetical

order.

Now list the vertices in order of distance from A. Do you notice anything?

Checkpoint 5

In class we studied a recursive implementation of DFS. Finish the iterative implementation of DFS below.

1 bool dfs(graph_t G, vertex start, vertex target) {
2 REQUIRES(start < graph_size(G) && target < graph_size(G));
3

4 if (start == target) return true;
5

6 bool mark[graph_size(G)];
7 for (unsigned int i = 0; i < graph_size(G); i++)
8 mark[i] = false;
9

10 // initialize data structure
11

12 // put start into our data structure
13 mark[start] = true;
14

15 while ( ) { // unless our data structure is empty
16

17 vertex v = // retrieve a vertex from our data structure
18 if (v == target) {
19

20 // free our data structure
21 return true;
22 }
23 for (vertex w = 0; w < graph_size(G); w++) {
24 if (graph_hasedge(G, v, w) && !mark[w]) {
25 mark[w] = true;
26

27 // add the neighbor to our data structure
28 }
29 }
30 }
31 stack_free(S);
32 return false;
33 }


