
Final Exam

15-122 Principles of Imperative Computation

Friday 15th December, 2017

Name:

Andrew ID:

Recitation Section:

Instructions

• This exam is closed-book with one sheet of notes permitted.

• You have 180 minutes to complete the exam.

• There are 7 problems on 28 pages (including 2 blank pages and 2 reference sheets at the end).

• Use a dark pen or pencil to write your answers.

• Read each problem carefully before attempting to solve it.

• Do not spend too much time on any one problem.

• Consider if you might want to skip a problem on a first pass and return to it later.

Max Score

Contracts [C0 7→ C] 30

Safety [C] 20

Complexity 20

Mergeable Heaps [C] 30

Virtual Machines [C] 60

Graph Representation [C] 50

Shortest Path [C] 40

Total: 250

1

15-122 (Fall 2017) Final Page 2/28

1 Contracts [C0 7→ C] (30 points)
The following C0 code checks the validity of a union-find data structure implemented as an
array. Recall that each element in the array maps a vertex in a graph to its canonical represen-
tative. It does not do height tracking. You do not need to understand the details of this code.

Recall that the array utilities le_seg(x,A,lo,hi) and gt_seg(x,A,lo,hi) implement the
tests x ≤ A[lo, hi) and x > A[lo, hi), respectively.

1 bool no_loops(int[] UFS, int n, int v)
2 //@requires n == \length(UFS);
3 //@requires 0 <= v && v < n;
4 //@requires le_seg(0, UFS, 0, v);
5 //@requires gt_seg(n, UFS, 0, v);
6 {
7 int w = v; // Starting point
8 int k = 0; // Counter
9 while (UFS[w] != w && k < n)

10 //@loop_invariant 0 <= k && k <= n;
11 {
12 w = UFS[w];
13 k++;
14 }
15 return k < n;
16 }
17

18 bool is_ufs(int[] UFS, int n) {
19 if (!is_array_expected_length(UFS, n))
20 return false;
21

22 for (int v = 0; v < n; v++)
23 //@loop_invariant 0 <= v && v <= n;
24 //@loop_invariant le_seg(0, UFS, 0, v);
25 //@loop_invariant gt_seg(n, UFS, 0, v);
26 {
27 if (!(0 <= UFS[v] && UFS[v] < n))
28 return false;
29

30 if (!no_loops(UFS, n, v))
31 return false;
32 }
33 return true;
34 }

Task 15pts Prove that the loop invariant on line 25 is true initially (INIT).

To show:

Because

Task 210pts Prove that the loop invariant on line 25 is preserved by each iteration of the loop (PRES).
You may not need all lines.

Assume:

To show:

(a) by
(b) by
(c) by
(d) by
(e) by

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 3/28

Task 35pts Is the array access on line 9 safe? If you think it is, provide a proof. If you think it is
not, give a 3-element array UFS and a values for v so that the call no_loops(UFS, 3, v)
causes a memory violation.

� Safe,
because

� Unsafe
Counterexample: v == , UFS ==

0 1 2

Task 410pts Translate the function no_loops into C. You may assume that the array utility functions
have been correctly ported to C for you. If a C0 contract cannot be expressed in C, briefly
explain why in a comment. Note in particular that you will need to translate the loop
invariant on line 10 into appropriately placed ASSERT statements.

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 4/28

2 Safety [C] (20 points)
For the C functions in this question, write (additional) preconditions that are sufficient to
ensure that there will be no undefined behavior and no memory leaks. Your preconditions
must be as permissive as possible: they should allow the function to run whenever undefined
behavior and memory leaks would not occur. Make sure it’s not possible to cause undefined
behavior in the precondition itself!

If it’s not possible to ensure that a function is free of undefined behavior and memory leaks,
then write the precondition false, which indicates that the function cannot be run safely. If
no preconditions are needed, write the precondition true.

Do not assume any implementation-defined behaviors except that a byte is 8 bits. Your pre-
conditions should make your functions safe for any implementation-defined behavior.

Task 14pts

unsigned short a1(unsigned short x, int z) {

REQUIRES();

return x << z;
}

Task 24pts

void a2(long **A, size_t n) {

REQUIRES();

for (size_t i = 0; i < n; i++)
if (A[i] != NULL) free(A[i]);

free(A);
}

Task 34pts

int a3(unsigned short n) {

REQUIRES();

if (n == 0) return -1;

int x = 0;
int *B = xcalloc(n, sizeof(int));
for (size_t i = 0; i < n; i++)

x += B[i];
free(B);
return x;

}

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 5/28

Task 44pts For this task, assume that A is a pointer to a heap-allocated array of size n.

void a4(int *A, size_t n) {

REQUIRES();

for (size_t i = 0; i < n; i++)
free(&A[i]);

}

Task 54pts For this task, assume that casting between signed and unsigned types of the same size
works as seen in class.

int a5(signed char n, int m) {

REQUIRES();

unsigned int x = (unsigned int)(unsigned char)n;
unsigned int y = (unsigned int)(signed int)n;

if (x != y) return INT_MIN + m;
return m;

}

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 6/28

3 Complexity (20 points)
Give worst-case running time bounds for the following operations. Some of the descriptions
state that multiple operations are happening: give the cost of doing the entire sequence of oper-
ations, not the cost of doing a single operation within the sequence.

If the worst case depends on amortized behavior, also write the word AMORTIZED.

Assume comparison functions and hash functions are all O(1).

Always give the simplest, tightest big-O bound.

Worst-case

Adding n elements to an initially empty stack (implemented as
a linked list).

Adding n elements to an unbounded array, using mergesort to
re-sort the array after every single addition.

Adding n elements to an unbounded array, using quicksort to
re-sort the array once, after all n additions.

Inserting an element into a min-heap that already has n ele-
ments in it and then removing the minimum from the min-heap.

Adding n elements to an initially empty binary search tree.

Adding n elements to an initially empty AVL tree.

Inserting n elements to an initially empty non-resizing,
separate-chaining hash table with table size m.

Computing the number of chains that are empty in a separate-
chaining hash table with n elements and table size m.

Running Kruskal’s algorithm on a graph with v vertices and e
edges using depth-first search to verify if two vertices are al-
ready connected.

Running Kruskal’s algorithm on a graph with v vertices and e
edges using union-find with height tracking to minimize tree
height.

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 7/28

4 Mergeable Heaps [C] (30 points)
This question explores mergeable heaps. Rather than growing a heap by adding an element to it,
mergeable heaps are grown by merging two existing heaps. Viewed as trees, mergeable heaps
maintain the same order invariant as the min-heaps discussed in class, but may impose different
invariants on the heap’s shape.

Task 1 We start out with a naive version of a mergeable heap, which only maintains the order
invariant but does not constrain the heap’s shape. Below is a summary of the relevant
type definitions and C0-style prototypes. For simplicity, we record the priority as the
field value rather than as we saw in class.

typedef struct heap_header heap;
struct heap_header {
int value; // Node priority
heap *left;
heap *right;

};

bool empty(heap *H);
//@requires is_mergeable_heap(H);

heap* merge(heap *L, heap *R)
//@requires is_mergeable_heap(L);
//@requires is_mergeable_heap(R);
//@ensures is_mergeable_heap(\result);

heap* delete_min(heap *H);
//@requires is_mergeable_heap(H);
//@requires !empty(H);
//@ensures is_mergeable_heap(\result);

a.4pts Complete the specification function is_minheap in the box below, defining the order
invariant, which is the same as the one for the min-heaps discussed in class. The speci-
fication function is called from within the representation invariant is_mergeable_heap:

bool is_mergeable_heap(heap *H) { // Don’t worry about circularity
if (H == NULL) return true;
return is_minheap(H, H->value);

}

Hint: you will not need additional NULL-checks, nor additional space.

bool is_minheap(heap *H, int lower_bound) {
if (H == NULL) return true;

}

To maintain the order invariant, the function merge(L, R) merges heaps L and R by con-
sidering the priority pL of the root rL of L and the priority pR of the root rR of R:
• if pL ≤ pR, it chooses rL to be the root of the resulting tree and merges the right

subtree of L with R.
• if pL > pR, it chooses rR to be the root of the resulting tree and merges the right

subtree of R with L.
In summary, merge chooses the heap with the smaller root and merges its right subtree
with the other heap. Note that merge leaves the left subtree of the chosen heap intact.

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 8/28

For each of the examples below, draw the heap resulting from calling the function merge
on the two given heaps L and R in the box provided. Each node contains its priority.

b.2pts

c.2pts

d.3pts

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 9/28

e.8pts Complete the function merge, which implements the specification provided in Task 1.b.
You can use the type definitions and prototypes given on page 7:

heap* merge(heap *L, heap *R) {
REQUIRES(is_mergeable_heap(L) && is_mergeable_heap(R));

if (L == NULL) ;

if (R == NULL) ;

if (L->value <= R->value) {

L->right = ;

ENSURES();

return ;
} else {
R->right = ;

ENSURES();

return ;
}

}

f.4pts Complete function delete_min, which returns the heap resulting from removing
the root from the heap H. You can use the type definitions and prototypes given
on page 7:

heap* delete_min(heap *H) {
REQUIRES();

;

;

ENSURES();

;
}

g.2pts What is the simplest and tightest worst-case complexity of merge, when invoked on
heaps with nL and nR nodes? Hint: observe that merge only traverses right subtrees.

O()

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 10/28

Task 2 Next, we touch on leftist heaps, a more elaborate form of mergeable heaps, that maintain in
addition to the order invariant also the leftist shape invariant. The shape invariant makes
sure that the left subtree of each node is at least as deep as its right subtree.
To express this invariant, we extend the heap struct given in Task 1 with the field rank,
which records the number of nodes along the path from the root of a heap to its rightmost
leaf. More formally, the rank of a heap H is:

• 0 if H is empty (i.e., H == NULL), and otherwise
• 1 plus the rank of its right subtree.

A heap H is leftist, if H satisfies the order invariant and if, for every node x in H , the rank
of x’s left subtree is greater than or equal to the rank of x’s right subtree.
To maintain the leftist shape invariant, merge now needs to swap the left subtree with the
right subtree before returning, if the rank of the left subtree is smaller than the rank of the
right subtree. For each of the examples below, draw the heap resulting from calling the
new merge on the two given heaps L and R in the box provided:

a.2pts

b.3pts You may find the scratch pages at the end of this exam handy.

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 11/28

5 Virtual Machines [C] (60 points)
This question deals with the C0VM. The specifications of a selection of C0VM instructions
can be found on page 27 of this exam. You may assume the same implementation-defined C
behaviors encountered in homework (e.g., 8-bit chars and 4-byte ints).

Task 1 The C0VM instruction ildc loads large integer constants, for example 0x15122, onto the
operand stack. In this exercise, we will pretend that this instruction does not exist, and
achieve the same effect with some of the remaining instructions on page 27. We will do
so in two steps.

a.4pts Write a C0 expression that evaluates to 0x15122 using only integers in the range
[−128, 128). Feel free to express these integers in either decimal or hexadecimal at
your convenience. Hint: C0’s bitwise operators may come really handy.

== 0x15122

b.10pts Using the above as a guideline, write a C0VM bytecode fragment that loads the in-
teger 0x15122 onto the operand stack. Write the bytecode values in the left column
(e.g., “15 0A”). Feel free to write the corresponding instructions (here “vload 10”),
and the contents of the stack in comments to their right.

Initial stack: S

#

#

#

#

#

#

#

#

#

Final stack: S, 0x15122

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 12/28

Task 2 It is sometimes useful to provide special bytecode instructions for operations that program-
mers use very frequently. One such operation is the increment or decrement of a value by a
small integer, e.g., i+2 or x-1.
We will do so using the new bytecode operation iincr , which increments the (integer)
value on the top of the operand stack by , a signed number that fits in one byte. If is
negative, this value is decremented. Using the notation seen in class, it is defined as follows:

0xd0 iincr S, x:w32 -> S, x+b:w32

a.10pts Implement the instruction iincr according to the above spec. Recall that val2int
converts a c0_value to an integer, that int2val converts an integer to a c0_value,
that c0v_pop pops a c0_value from the operand stack and that c0v_push pushes
a c0_value onto the stack. You can assume that P is a ubyte array that holds the
bytecode, pc is the current program counter, S is the operand stack, and V is the
c0_value array containing the local variables of the current function. Recall also that
this is part of a switch statement. Make sure to cast appropriately.

case IINCR: {

}

b.8pts Using iincr, complete the bytecode that implements the function

int f(int x) {
x++;
return x;

}

You will need exactly the number of lines provided. Fill all blanks.

#<f>
00 01 # number of arguments = 1
00 01 # number of local variables = 1

code length = bytes

#

#

#

15 00 # vload 0 # x
B0 # return #

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 13/28

Task 3 This simple example suggests an instruction even more useful than iincr: an instruction
that increments a local variable rather than the value at the top of the stack. This will allow
C0 statements like x++; or i -= 3; to be implemented using a single C0VM instruction.

a.2pts Give an abstract definition of this instruction, which we call vincr:

0xd1 vincr <b,i>

b.10pts Complete the implementation of this instruction:

case VINCR: {

}

c.4pts Complete the bytecode for the function f in Task 2.b using vincr rather than iincr.
Fill all blanks.

#<f>
00 01 # number of arguments = 1
00 01 # number of local variables = 1

code length = bytes

#

15 00 # vload 0 # x
B0 # return #

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 14/28

Task 4 The compiler has developed a bug and is producing bytecode that may cause assertion
failures or undefined behavior in your VM! (It’s not too bad, though: the examples below
have no funny business with the code length, and the mnemonics reported in comments
faithfully represent the bytecode to the left.)
If any of these main functions execute without error or incident, write down the value
they will return. If any of these main functions causes assertion failures or undefined
behavior in the VM, then circle the first line that will cause unacceptable (e.g., assertion
failures), undefined, or unpredictable behavior when executed by the C0VM.

a.4pts

00 00 # number of arguments = 0
00 00 # number of local variables = 0
00 08 # code length = 8 bytes
10 05 # bipush 5
10 FF # bipush -1
59 # dup
68 # imul
78 # ishl
B0 # return

b.4pts

00 00 # number of arguments = 0
00 00 # number of local variables = 0
00 08 # code length = 8 bytes
13 00 01 # ildc 15122 (defined in integer pool)
10 0A # bipush 10
64 # isub
60 # iadd
B0 # return

c.4pts

00 00 # number of arguments = 0
00 00 # number of local variables = 0
00 14 # code length = 20 bytes
10 15 # bipush 21
59 # dup
9F 00 06 # if_cmpeq +6
A7 00 0F # goto +15
10 00 # bipush 0
10 2A # bipush 42
4E # imstore
A7 00 05 # goto +5
10 2A # bipush 42
B0 # return

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 15/28

6 Graph Representation [C] (50 points)
The minimal graph interface seen in class, and reported below, did not provide a function that
returns the neighbors of a vertex. As a consequence, some of the algorithms we developed,
like DFS and BFS, had a higher complexity than otherwise achievable. In this exercise, we
will add such a function, get_neighbors, together with some building blocks. The resulting
extended interface is as follows (extensions are marked as //NEW):

typedef unsigned int vertex;
typedef struct graph_header* graph_t;

typedef struct adjlist_node adjlist; // NEW
struct adjlist_node { // NEW
vertex vert; // NEW
adjlist *next; // NEW

}; // NEW

graph_t graph_new(unsigned int numvert);
//@ensures \result != NULL;

void graph_free(graph_t G);
//@requires G != NULL;

unsigned int graph_size(graph_t G);
//@requires G != NULL;

bool graph_hasedge(graph_t G, vertex v, vertex w);
//@requires G != NULL;
//@requires v < graph_size(G) && w < graph_size(G);

void graph_addedge(graph_t G, vertex v, vertex w);
//@requires G != NULL;
//@requires v < graph_size(G) && w < graph_size(G);
//@requires v != w && !graph_hasedge(G, v, w);

adjlist* get_neighbors(graph_t G, vertex v); // NEW
//@requires G != NULL && v < graph_size(G); // NEW

void free_neighbors(adjlist *L); // NEW

The type adjlist, taken identically from the adjacency list representation of graphs, is simply
a NULL-terminated linked list of vertices. The function get_neighbors(G, v) returns the
neighbors of vertex v in graph G as such a list. It should not allocate new memory unless it
really has to. The function free_neighbors(L) disposes of a list of vertices L returned by
get_neighbors, if appropriate.

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 16/28

Task 1 The following client-side code uses the new functions to print a graph.

1 void graph_print(graph_t G) {
2 REQUIRES(G != NULL);
3 for (vertex v = 0; v < graph_size(G); v++) {
4 printf("Vertices connected to %u: ", v);
5 for (adjlist *p = get_neighbors(G, v); p != NULL; p = p->next)
6 printf(" %u,", p->vert);
7 printf("\n");
8 free_neighbors(p);
9 }

10 }

a.3pts The above code has an error. On what line does this error occur and what is causing
it?

b.7pts Modify the code for print_graph above in order to fix this error (you may abbreviate
the print statements if you want).

void graph_print(graph_t G) {
REQUIRES(G != NULL);

}

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 17/28

Task 2 We will now extend the adjacency list implementation of the graph interface with the added
functions. Recall the definition of the internal type graph and the prototype of some of the
specification functions:

typedef struct graph_header graph;
struct graph_header {
unsigned int size;
adjlist **adj;

};

bool is_vertex(graph *G, vertex v);
bool is_graph(graph *G);

a.6pts Efficiently implement the function get_neighbors. Include appropriate contracts.

adjlist* get_neighbors(graph *G, vertex v) {

}

b.3pts What is the complexity of get_neighbors as a function of the number v of vertices
and the number e of edges in the input graph?

O()

c.3pts Complete the body of free_neighbors so that, by the time we are done using a
graph, all allocated memory has been freed and none has been freed twice.

void free_neighbors(adjlist *L) {

}

d.3pts Using this implementation of graphs, what is the simplest and tightest worst-case
complexity of graph_print? Hint: consider how many things get printed.

O()

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 18/28

Task 3 Next, we will do the same with the adjacency matrix implementation of the graph interface.
The internal type graph is now defined as follows:

typedef struct graph_header graph;
struct graph_header {
unsigned int size;
bool *matrix; // 1-D array

};

bool is_vertex(graph *G, vertex v);
bool is_graph(graph *G);

In the code questions below, recall that you can use interface functions.

a.6pts Efficiently implement the function get_neighbors. Include appropriate contracts.

adjlist* get_neighbors(graph *G, vertex v) {

}

b.3pts What is the complexity of get_neighbors as a function of the number v of vertices
and the number e of edges in the input graph?

O()

c.3pts Complete the body of free_neighbors so that, by the time we are done using a
graph, all allocated memory has been freed and none has been freed twice.

void free_neighbors(adjlist *L) {

}

d.3pts Using this implementation of graphs, what is the simplest and tightest worst-case
complexity of graph_print? Hint: consider how many things get printed.

O()

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 19/28

Task 4 The adjacency matrix code you worked on in lab implemented the matrix as an array of
arrays (a 2D array). The above type struct graph_header uses instead a one-dimensional
array, like in the images assignment. This part asks you to write some additional func-
tions relative to one-dimensional arrays.

a.5pts Complete the specification function is_graph(G) that checks that the adjacency ma-
trix representation of its input graph is valid. The helper function is_valid_row
checks that the row for vertex v of the adjacency matrix of graph G is valid.

bool is_valid_row(graph *G, vertex v) {
REQUIRES(G != NULL);

size_t v_row = ; // Start index of v’s row

if () // No self loops
return false;

for () {
// Every outgoing edge a corresponding edge coming back to it

if ()
return false;

}
return true;

}

bool is_graph(graph *G) {

if (G == NULL) return ;

for (vertex v = 0; v < G->size; v++)
{
if (!is_valid_row(G, v)) return ;

}
return ;

}

b.5pts Complete the function graph_new, including the appropriate contracts.

graph* graph_new(unsigned int size) {

}

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 20/28

7 Shortest Path [C] (40 points)
In a graph with weighted edges, the weight of a path is the sum of the
weights of its edges. For example, the path (A-B-C-D) in the example
graph on the right has weight 12 (= 8 + 1 + 3). The path (A-B) has
weight 8 since its one edge has weight 8. The empty path which starts
and ends at vertex A has weight 0.
A shortest path between two vertices v and w is a path of minimum
weight among all the paths between them. Its weight is called the
shortest distance between v and w. In our example, the shortest path
between A and B is A-E-C-B, and therefore the shortest distance be-
tween them is 4.
In this exercise, we will implement a function that computes the shortest distance between
a given vertex and every other vertex in a graph. The algorithm it embodies is known as
Dijkstra’s algorithm, after the Dutch computer scientist Edsger Dijkstra.

But first, we need to update the graph interface studied in class to handle weighted graphs:

typedef unsigned int vertex;
typedef struct graph_header* graph_t;

graph_t graph_new(unsigned int numvert); // New graph with numvert vertices

void graph_free(graph_t G);

unsigned int graph_size(graph_t G); // Number of vertices in the graph

// Returns the weight of (v1,v2) or -1 if they are not connected

int graph_hasedge(graph_t G, vertex v1, vertex v2);
//@requires v1 < graph_size(G) && v2 < graph_size(G);

void graph_addedge(graph_t G, vertex v1, vertex v2, int weight);

//@requires v1 < graph_size(G) && v2 < graph_size(G);

//@requires v1 != v2 && graph_hasedge(G, v1, v2) == -1 && weight > 0 ;

The main changes are highlighted :

1. If graph G has an edge between vertices v1 and v2, the function graph_hasedge(G,v1,v2)
now returns the weight of this edge. If v1 and v2 are not connected, it returns -1.

2. Naturally, the function graph_addedge now takes the weight of the added edge as an
additional argument. Weights are strictly positive.

Throughout this exercise, we will assume for simplicity that the weight of every path in the
given graphs is less than INT_MAX.

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 21/28

Dijkstra’s algorithm takes as input a graph G and a vertex start. It outputs an array dist
that maps every vertex in G to its shortest distance to start. If start and v are not connected,
dist[v] contains INT_MAX. Like DFS and BFS, Dijkstra’s algorithm uses a mark array to keep
track of visited vertices. Like these algorithms, it explores the graph G beginning at start
and following the edges of connected vertices. It keeps track of the vertices to visit next in
a priority queue where the priority is given by the shortest distance between start and each
vertex at the time of insertion (shorter paths may be discovered later). Shorter distances have
higher priority. During execution dist[v] contains the shortest distance between start and
v known so far (or INT_MAX if v has not yet been visited).

Dijkstra’s algorithm proceeds as follows:

1. Mark all vertices as unvisited.
2. Create dist and set the distance to all vertices other than start to INT_MAX. Set the

distance to start to 0.
3.

−→
Create a priority queue Q and insert the pair (start, 0) in it.

4. For as long as Q is not empty
(a) Get the vertex v with minimum weight from Q

(b) If v is unmarked
• mark it
• for every unmarked neighbor w of v

i. let d be the weight of the edge (v, w) in G

ii. if dist[v] + d < dist[w]

– update dist[w] to dist[v] + d

–===⇒ insert (w, dist[w]) into Q

5. Return dist

Task 110pts Complete the table below by simulating the execution of Dijkstra’s algorithm on the
above graph. The first three rows have been filled for you already. The first row shows
the contents of Q and dist, and the marked vertices just before entering the loop (indi-
cated with −→ above). The subsequent rows show these values and the selected vertex v
at the end of each iteration of the loop (indicated as =⇒). INT_MAX is abbreviated as∞.

v Q dist marked

A B C D E

−→ (A, 0) 0 ∞ ∞ ∞ ∞

=⇒ A (B, 8), (E, 1) 0 8 ∞ ∞ 1 A

=⇒ E (B, 8), (B, 5), (C, 3) 0 5 3 ∞ 1 A,E

=⇒

=⇒

=⇒

=⇒

=⇒

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 22/28

Since Dijkstra’s algorithm relies on a priority queue, we need to define the type of its elements
and the notion of priority. The interface of generic priority queues is given on page 28 of this
exam. Since we are now working in C, it upgrades the interface we saw in class with functions
to deallocate memory. The differences are highlighted.
The type of elements to insert in the priority queue are vertices together with their best-known
distance from start at that point. This is captured by the type:

typedef struct vert_dist_pair vert_dist;
struct vert_dist_pair {
vertex vert;
int dist; // Best known distance from start to vert

};

The (pre-implemented) helper function

vert_dist* mk_vert_dist(vertex v, int d);

packages vertex v and distance d into an entity of type vert_dist and returns a pointer to it.

Task 26pts Define the function has_shorter_distance(e1, e2) so that it returns true if the dis-
tance component of e1 is strictly less than the one of e2, and false otherwise.

bool has_shorter_distance(elem e1, elem e2) {
REQUIRES(e1 != NULL && e2 != NULL);

}

Task 35pts Assuming our priority queue is not self-resizing, how big should we make it to be sure we
won’t run out of space no matter how many edges the graph contains? Said differently,
what capacity should we specify when calling pq_new? Give the smallest such value
relative to the number of vertices in the graph.

Task 44pts Next, we will implement Dijkstra’s algorithm as a single non-recursive function. What
kind of arrays can the mark array, mark, and the shortest distance array, dist, be? Check
all that apply.

mark: � Stack-allocated � Heap-allocated

dist: � Stack-allocated � Heap-allocated

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 23/28

Task 515pts Based on the pseudo-code on page 21 (and mostly repeated below), complete the follow-
ing client-side function that implements Dijkstra’s algorithm.

int* dijkstra(graph_t G, vertex start) {
REQUIRES(G != NULL && start < graph_size(G));

// Mark all vertices as unvisited

mark ;

for (vertex v = 0; v < graph_size(G); v++)
mark[v] = false; // v has not been visited yet

// Create dist and set the distance to all vertices other than
// start to INT_MAX. Set the distance to start to 0.

dist ;

for (vertex v = 0; v < graph_size(G); v++)
dist[v] = INT_MAX; // No known distance from start

dist[start] = 0;

// Create a priority queue Q and insert (start,0) in it.
int capacity = /* Your answer from task 3 -- nothing to do */;

pq_t Q = pq_new(capacity, ,);

pq_add(Q,);

(Continued on next page)

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 24/28

Task 6 (continued from previous page)

while () // For as long as Q is not empty
{
// Get the vertex v with minimum weight from Q

vert_dist *vd = ;

vertex v = ;

if () { // if v is unmarked

; // mark it

// for every unmarked neighbor w of v,
// let d be the weight of the edge (v,w)
for (vertex w = 0; w < graph_size(G); w++) {

int d = ;

if () {

if (dist[v] + d < dist[w]) {

; // update dist[w]

// insert (w, dist[w]) into Q

;
}

}
}

}
// anything to clean up?

}
// anything to clean up?

// anything to clean up?
return dist;

}

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 25/28

(This page intentionally left blank.)

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 26/28

(This page intentionally left blank.)

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 27/28

REFERENCE: Selected C0VM Instructions

Stack operations
0x59 dup S, v -> S, v, v
0x57 pop S, v -> S

Arithmetic
0x60 iadd S, x:w32, y:w32 -> S, x+y:w32
0x7E iand S, x:w32, y:w32 -> S, x&y:w32
0x6C idiv S, x:w32, y:w32 -> S, x/y:w32
0x68 imul S, x:w32, y:w32 -> S, x*y:w32
0x80 ior S, x:w32, y:w32 -> S, x|y:w32
0x70 irem S, x:w32, y:w32 -> S, x%y:w32
0x78 ishl S, x:w32, y:w32 -> S, x<<y:w32
0x7A ishr S, x:w32, y:w32 -> S, x>>y:w32
0x64 isub S, x:w32, y:w32 -> S, x-y:w32
0x82 ixor S, x:w32, y:w32 -> S, x^y:w32

Local Variables
0x15 vload <i> S -> S, v (v = V[i])
0x36 vstore <i> S, v -> S (V[i] = v)

Constants
0x01 aconst_null S -> S, null:*
0x10 bipush S -> S, x:w32 (x = (w32)b, sign extended)
0x13 ildc <c1,c2> S -> S, x:w32 (x = int_pool[(c1<<8)|c2])
0x14 aldc <c1,c2> S -> S, a:* (a = &string_pool[(c1<<8)|c2])

Control Flow
0x00 nop S -> S
0x9F if_cmpeq <o1,o2> S, v1, v2 -> S (pc = pc+(o1<<8|o2) if v1 == v2)
0xA0 if_cmpne <o1,o2> S, v1, v2 -> S (pc = pc+(o1<<8|o2) if v1 != v2)
0xA1 if_icmplt <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x < y)
0xA7 goto <o1,o2> S -> S (pc = pc+(o1<<8|o2))
0xB0 return ., v -> . (return v to caller)

Memory
0xBB new <s> S -> S, a:* (*a is now allocated, size <s>)
0x2E imload S, a:* -> S, x:w32 (x = *a, a != NULL, load 4 bytes)
0x4E imstore S, a:*, x:w32 -> S (*a = x, a != NULL, store 4 bytes)

c© Carnegie Mellon University 2017

15-122 (Fall 2017) Final Page 28/28

REFERENCE: Generic Priority Queues in C

/**************************** Client interface *****************************/

typedef void* elem; // Supplied by client

// f(x,y) returns true if e1 is STRICTLY higher priority than e2
typedef bool has_higher_priority_fn(elem e1, elem e2);
//@requires e1 != NULL && e2 != NULL;

typedef void elem_free_fn(elem e);

//@requires e != NULL;

/**************************** Library interface ****************************/

typedef struct heap_header* pq_t;

bool pq_empty(pq_t Q)
/*@requires Q != NULL; @*/ ;

bool pq_full(pq_t Q)
/*@requires Q != NULL; @*/ ;

pq_t pq_new(int capacity, has_higher_priority_fn* prior , elem_free_fn* fr)

/*@requires capacity > 0 && prior != NULL && fr != NULL ; @*/
/*@ensures \result != NULL && pq_empty(\result); @*/ ;

void pq_add(pq_t Q, elem x)
/*@requires Q != NULL && !pq_full(Q) && x != NULL; @*/ ;

elem pq_rem(pq_t Q)
/*@requires Q != NULL && !pq_empty(Q); @*/
/*@ensures \result != NULL; @*/ ;

elem pq_peek(pq_t Q)
/*@requires Q != NULL && !pq_empty(Q); @*/
/*@ensures \result != NULL; @*/ ;

void pq_free(pq_t Q)

/*@requires Q != NULL; @*/ ;

C1-style contracts are given as documentation. Changes w.r.t. in-class version are highlighted .

c© Carnegie Mellon University 2017

	Contracts [C0 C]
	Safety [C]
	Complexity
	Mergeable Heaps [C]
	Virtual Machines [C]
	Graph Representation [C]
	Shortest Path [C]

