
Chapter 2
Security Games Applied to Real-World:
Research Contributions and Challenges

Manish Jain, Bo An, and Milind Tambe

Abstract The goal of this chapter is to introduce a challenging real-world problem
for researchers in multiagent systems and beyond, where our collective efforts may
have a significant impact on activities in the real-world. The challenge is in applying
game theory for security: our goal is not only to introduce the problem, but also to
provide exemplars of initial successes of deployed systems in this problem arena.
Furthermore, we present key ideas and algorithms for solving and understanding
the characteristics large-scale real-world security games, and then present some key
open research challenges in this area.

2.1 Introduction

Security is a critical concern around the world that arises in protecting our ports,
airports, transportation or other critical national infrastructure from adversaries, in
protecting our wildlife and forests from poachers and smugglers, and in curtailing
the illegal flow of weapons, drugs and money; and it arises in problems ranging
from physical to cyber-physical systems. In all of these problems, we have limited
security resources which prevent full security coverage at all times; instead, limited
security resources must be deployed intelligently taking into account differences in
priorities of targets requiring security coverage, the responses of the attackers to the
security posture and potential uncertainty over the types, capabilities, knowledge
and priorities of attackers faced.

Game theory is well-suited to adversarial reasoning for security resource allo-
cation and scheduling problems. Casting the problem as a Bayesian Stackelberg
game, new algorithms have been developed for efficiently solving such games that
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provide randomized patrolling or inspection strategies. These algorithms have led
to some initial successes in this challenge problem arena, leading to advances
over previous approaches in security scheduling and allocation, e.g., by addressing
key weaknesses of predictability of human schedulers. These algorithms are now
deployed in multiple applications: ARMOR has been deployed at the Los Angeles
International Airport (LAX) since 2007 to randomize checkpoints on the roadways
entering the airport and canine patrol routes within the airport terminals [1]; IRIS,
a game-theoretic scheduler for randomized deployment of the US Federal Air
Marshals (FAMS) requiring significant scale-up in underlying algorithms, has been
in use since 2009 [2]; PROTECT, which uses a new set of algorithms based on
quantal-response is deployed in the port of Boston for randomizing US coast guard
patrolling [3,4]; PROTECT has been deployed in the port of Boston since April 2011
and is now in use at the port of New York; GUARDS is under evaluation for national
deployment by the US Transportation Security Administration (TSA) [5], and
TRUSTS is being tested by the Los Angeles Sheriffs Department (LASD) in the LA
Metro system to schedule randomized patrols for fare inspection [6]. These initial
successes point the way to major future applications in a wide range of security
arenas; with major research challenges in scaling up our game-theoretic algorithms,
to addressing human adversaries’ bounded rationality and uncertainties in action
execution and observation, as well as in preference elicitation and multiagent
learning.

This paper will provide an overview of the models and algorithms, key research
challenges and a brief description of our successful deployments. While initial
research has made a start, a lot remains to be done; yet these are large-scale
interdisciplinary research challenges that call upon multiagent researchers to work
with researchers in other disciplines, be “on the ground” with domain experts, and
examine real-world constraints and challenges that cannot be abstracted away.

2.2 Stackelberg Security Games

Security problems are increasingly studied using Stackelberg games, since Stack-
elberg games can appropriately model the strategic interaction between a defender
and an attacker. Stackelberg games were first introduced to model leadership and
commitment [7], and are now widely used to study security problems ranging from
“police and robbers” scenario [8], computer network security [9], missile defense
systems [10], and terrorism [11]. Models for arms inspections and border patrolling
have also been modeled using inspection games [12], a related family of Stackelberg
games.

The wide use of Stackelberg games has inspired theoretic and algorithmic
progress leading to the development of fielded applications. These algorithms
are central to many fielded applications, as described in Sect. 2.3. For example,
DOBSS [13], an algorithm for solving Bayesian Stackelberg games, is central to
a fielded application in use at the Los Angeles International Airport [1]. Similarly,
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Table 2.1 Example security
game with two targets

Defender Attacker

Target Covered Uncovered Covered Uncovered

t1 10 0 −1 1
t2 0 −10 −1 1

Conitzer and Sandholm [14] give complexity results and algorithms for computing
optimal commitment strategies in Bayesian Stackelberg games, including both
pure and mixed-strategy commitments. This chapter provides details on this use
of Stackelberg games for modeling security domains. We first give a generic
description of security domains followed by security games, the model by which
security domains are formulated in the Stackelberg game framework.

2.2.1 Security Domains

In a security domain, a defender must perpetually defend a set of targets using
a limited number of resources, whereas the attacker is able to surveil and learn
the defender’s strategy and attacks after careful planning. This fits precisely into
the description of a Stackelberg game if we map the defender to the leader’s role
and the attacker to the follower’s role [12, 15]. An action, or pure strategy, for
the defender represents deploying a set of resources on patrols or checkpoints,
e.g. scheduling checkpoints at the LAX airport or assigning federal air marshals to
protect flight tours. The pure strategy for an attacker represents an attack at a target,
e.g., a flight. The strategy for the leader is a mixed strategy, a probability distribution
over the pure strategies of the defender. Additionally, with each target are also
associated a set of payoff values that define the utilities for both the defender and
the attacker in case of a successful or a failed attack. These payoffs are represented
using the security game model, described next.

2.2.2 Security Games

In a security game, a set of four payoffs is associated with each target. These four
payoffs are the reward and penalty to both the defender and the attacker in case
of a successful or an unsuccessful attack, and are sufficient to define the utilities
for both players for all possible outcomes in the security domain. Table 2.1 shows
an example security game with two targets, t1 and t2. In this example game, if the
defender was covering (protecting) target t1 and the attacker attacked t1, the defender
would get 10 units of reward whereas the attacker would receive −1 units.

Security games make the assumption that it is always better for the defender to
cover a target as compared to leaving it uncovered, whereas it is always better for
the attacker to attack an uncovered target. This assumption is consistent with the
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Table 2.2 Example Bayesian security game with two targets and two attacker types

Attacker Type 1 Attacker Type 2

Defender Attacker Defender Attacker

Target Cov. Uncov. Cov. Uncov. Target Cov. Uncov. Cov. Uncov.

t1 10 0 −1 1 t1 5 −4 −2 1
t2 0 −10 −1 1 t2 4 −5 −1 2

payoff trends in the real-world. Another crucial feature of the security games is that
the payoff of an outcome depends only on the target attacked, and whether or not it
is covered by the defender [16]. The payoffs do not depend on the remaining aspects
of the defender allocation. For example, if an adversary succeeds in attacking target
t1, the penalty for the defender is the same whether the defender was guarding
target t2 or not. Therefore, from a payoff perspective, many resource allocations
by the defender are identical. This is exploited during the computation of a defender
strategy: only the coverage probability of each target is required to compute the
utilities of the defender and the attacker.

The Bayesian extension to the Stackelberg game allows for multiple types of
players, with each associated with its own payoff values [13, 17]. Bayesian games
are used to model uncertainty over the payoffs and preferences of the players; indeed
more uncertainty can be expressed with increasing number of types. For the security
games of interest, there is only one leader type (e.g., only one police force), although
there can be multiple follower types (e.g., multiple attacker types trying to infiltrate
security). Each follower type is represented using a different payoff matrix, as shown
by an example with two attacker types in Table 2.2. The leader does not know the
follower’s type, but knows the probability distribution over them. The goal is to find
the optimal mixed strategy for the leader to commit to, given that the defender could
be facing any of the follower types.

2.2.3 Solution Concept: Strong Stackelberg Equilibrium

The solution to a security game is a mixed strategy for the defender that maximizes
the expected utility of the defender, given that the attacker learns the mixed strategy
of the defender and chooses a best-response for himself. This solution concept is
known as a Stackelberg equilibrium [18]. However, the solution concept of choice
in all deployed applications is a strong form of the Stackelberg equilibrium [19],
which assumes that the follower will always break ties in favor of the leader in cases
of indifference. This is because a strong Stackelberg equilibrium (SSE) exists in all
Stackelberg games, and additionally, the leader can always induce the favorable
strong equilibrium by selecting a strategy arbitrarily close to the equilibrium that
causes the follower to strictly prefer the desired strategy [20]. Indeed, SSE is the
mostly commonly adopted concept in related literature [13, 14, 21].
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A SSE for security games is informally defined as follows (the formal definition
of SSE is not introduced for brevity, and can instead be found in [16]):

Definition 2.1. A pair of strategies form a Strong Stackelberg Equilibrium (SSE)
if they satisfy:

1. The defender plays a best-response, that is, the defender cannot get a higher
payoff by choosing any other strategy.

2. The attacker play a best-response, that is, given a defender strategy, the attacker
cannot get a higher payoff by attacking any other target.

3. The attacker breaks ties in favor of the leader.

2.3 Deployed and Emerging Security Applications

We now talk about five successfully deployed applications that use the concept
of strong Stackelberg Equilibrium to suggest security scheduling strategies to the
defender in different real-world domains.

2.3.1 ARMOR for Los Angeles International Airport

Los Angeles International Airport (LAX) is the largest destination airport in
the United States and serves 60–70 million passengers per year. The LAX police
use diverse measures to protect the airport, which include vehicular checkpoints,
police units patrolling the roads to the terminals, patrolling inside the terminals (with
canines), and security screening and bag checks for passengers. The application of
game-theoretic approach is focused on two of these measures: (1) placing vehicle
checkpoints on inbound roads that service the LAX terminals, including both
location and timing, and (2) scheduling patrols for bomb-sniffing canine units at the
different LAX terminals. The eight different terminals at LAX have very different
characteristics, like physical size, passenger loads, foot traffic or international versus
domestic flights. These factors contribute to the differing risk assessments of these
eight terminals. Furthermore, the numbers of available vehicle checkpoints and
canine units are limited by resource constraints. Thus, it is challenging to optimally
allocate these resources to improve their effectiveness while avoiding patterns in the
scheduled deployments.

The ARMOR system (Assistant for Randomized Monitoring over Routes) focuses
on two of the security measures at LAX (checkpoints and canine patrols) and
optimizes security resource allocation using Bayesian Stackelberg games. Take the
vehicle checkpoints model as an example. Assume that there are n roads, the police’s
strategy is placing m < n checkpoints on these roads where m is the maximum
number of checkpoints. The adversary may potentially choose to attack through
one of these roads. ARMOR models different types of attackers with different
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payoff functions, representing different capabilities and preferences for the attacker.
ARMOR uses DOBSS (Decomposed Optimal Bayesian Stackelberg Solver) [13] to
compute the defender’s optimal strategy. ARMOR has been successfully deployed
since August 2007 at LAX [1, 22].

2.3.2 IRIS for US Federal Air Marshals Service

The US Federal Air Marshals Service (FAMS) allocates air marshals to flights
originating in and departing from the United States to dissuade potential aggressors
and prevent an attack should one occur. Flights are of different importance based
on a variety of factors such as the numbers of passengers, the population of
source/destination, international flights from different countries, and special events
that can change the risks for particular flights at certain times. Security resource
allocation in this domain is significantly more challenging than for ARMOR:
a limited number of air marshals need to be scheduled to cover thousands of
commercial flights each day. Furthermore, these air marshals must be scheduled
on tours of flights that obey various constraints (e.g., the time required to board, fly,
and disembark). Simply finding schedules for the marshals that meet all of these
constraints is a computational challenge. Our task is made more difficult by the
need to find a randomized policy that meets these scheduling constraints, while also
accounting for the different values of each flight.

Against this background, the IRIS system (Intelligent Randomization In Schedul-
ing) has been developed and has been deployed by FAMS since October 2009 to
randomize schedules of air marshals on international flights. In IRIS, the targets are
the set of n flights and the attacker could potentially choose to attack one of these
flights. The FAMS can assign m < n air marshals that may be assigned to protect
these flights.

Since the number of possible schedules exponentially increases with the number
of flights and resources, DOBSS is no longer applicable to the FAMS domain.
Instead, IRIS uses the much faster ASPEN algorithm [23] to generate the schedule for
thousands of commercial flights per day. IRIS also uses an attribute-based preference
elicitation system to determine reward values for the Stackelberg game model.

2.3.3 PROTECT for US Coast Guard

The US Coast Guard’s (USCG) mission includes maritime security of the US coasts,
ports, and inland waterways; a security domain that faces increased risks due to
threats such as terrorism and drug trafficking. Given a particular port and the variety
of critical infrastructure that an attacker may attack within the port, USCG conducts
patrols to protect this infrastructure; however, while the attacker has the opportunity
to observe patrol patterns, limited security resources imply that USCG patrols
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Fig. 2.1 USCG boats patrolling the ports of Boston and NY. (a) PROTECT is being used in
Boston, (b) Extending PROTECT to NY

cannot be at every location 24/7. To assist the USCG in allocating its patrolling
resources, the PROTECT (Port Resilience Operational/Tactical Enforcement to
Combat Terrorism) model has been designed to enhance maritime security. It has
been in use at the port of Boston since April 2011, and now is also in use at the port
of New York (Fig. 2.1). Similar to previous applications ARMOR and IRIS, PROTECT

uses an attacker–defender Stackelberg game framework, with USCG as the defender
against terrorists that conduct surveillance before potentially launching an attack.

The goal of PROTECT is to use game theory to assist the USCG in maximizing
its effectiveness in the Ports, Waterways, and Coastal Security (PWCS) Mission.
PWCS patrols are focused on protecting critical infrastructure; without the resources
to provide 100 percent on scene presence at any, let alone all, of the critical
infrastructure, optimization of security resource is critical. Towards that end,
unpredictability creates situations of uncertainty for an enemy and can be enough to
deem a target less appealing. The PROTECT system, focused on the PWCS patrols,
addresses how the USCG should optimally patrol critical infrastructure in a port to
maximize protection, knowing that the attacker may conduct surveillance and then
launch an attack. While randomizing patrol patterns is key, PROTECT also addresses
the fact that the targets are of unequal value, understanding that the attacker will
adapt to whatever patrol patterns USCG conducts. The output of PROTECT is a
schedule of patrols which includes when the patrols are to begin, what critical
infrastructure to visit for each patrol, and what activities to perform at each critical
infrastructure.

While PROTECT builds on previous work, it offers some key innovations. First,
this system is a departure from the assumption of perfect attacker rationality
noted in previous work, relying instead on a quantal response (QR) model [24]
of the attacker’s behavior. Second, to improve PROTECT’s efficiency, a compact
representation of the defender’s strategy space is used by exploiting equiva-
lence and dominance. Finally, the evaluation of PROTECT for the first time
provides real-world data: (a) comparison of human-generated vs PROTECT security
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schedules, and (b) results from an Adversarial Perspective Team’s (human mock
attackers) analysis. The PROTECT model is now being extended to the port of
New York and it may potentially be extended to other ports in the US.

2.3.4 GUARDS for US Transportation Security Agency

The United States Transportation Security Administration (TSA) is tasked with
protecting the nation’s over 400 airports which services approximately 28,000
commercial flights and up to approximately 87,000 total flights per day. To pro-
tect this large transportation network, the TSA employs approximately 48,000
Transportation Security Officers, who are responsible for implementing security
activities at each individual airport. While many people are aware of common
security activities, such as individual passenger screening, this is just one of many
security layers TSA personnel implement to help prevent potential threats [25, 26].
These layers can involve hundreds of heterogeneous security activities executed by
limited TSA personnel leading to a complex resource allocation challenge. While
activities like passenger screening are performed for every passenger, the TSA
cannot possibly run every security activity all the time. Thus, while the resources
required for passenger screening are always allocated by the TSA, it must also
decide how to appropriately allocate its remaining security officers among the layers
of security to protect against a number of potential threats, while facing challenges
such as surveillance and an adaptive attacker as mentioned before.

To aid the TSA in scheduling resources to protect airports, a new application
called GUARDS (Game-theoretic Unpredictable and Randomly Deployed Security)
has been developed. While GUARDS also utilizes Stackelberg games as ARMOR

and IRIS, GUARDS faces three key challenges [5]: (1) reasoning about hundreds
of heterogeneous security activities; (2) reasoning over diverse potential threats;
and (3) developing a system designed for hundreds of end-users. To address
those challenges, GUARDS created a new game-theoretic framework that allows
for heterogeneous defender activities and compact modeling of a large number
of threats and developed an efficient solution technique based on general-purpose
Stackelberg game solvers. GUARDS is currently under evaluation and testing for
scheduling practices at an undisclosed airport. If successful, the TSA intends to
incorporate the system into their unpredictable scheduling practices nationwide.

2.3.5 TRUSTS for Urban Security in Transit Systems

In some urban transit systems, including the Los Angeles Metro Rail system,
passengers are legally required to purchase tickets before entering but are not
physically forced to do so (Fig. 2.2). Instead, security personnel are dynamically
deployed throughout the transit system, randomly inspecting passenger tickets.
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Fig. 2.2 TRUSTS for transit systems. (a) Los Angeles Metro, (b) Barrier-free entrance to transit
system

This proof-of-payment fare collection method is typically chosen as a more cost-
effective alternative to direct fare collection, i.e., when the revenue lost to fare
evasion is believed to be less than what it would cost to directly preclude it.

Take the Los Angeles Metro as an example. With approximately 300,000 riders
daily, this revenue loss can be significant; the annual cost has been estimated at
$5.6 million [27]. The Los Angeles Sheriffs Department (LASD) deploys uniformed
patrols on board trains and at stations for fare-checking (and for other purposes such
as crime prevention), in order to discourage fare evasion. With limited resources to
devote to patrols, it is impossible to cover all locations at all times. The LASD
thus requires some mechanism for choosing times and locations for inspections.
Any predictable patterns in such a patrol schedule are likely to be observed and
exploited by potential fare-evaders. The LASD’s current approach relies on humans
for scheduling the patrols. However, human schedulers are poor at generating
unpredictable schedules; furthermore such scheduling for LASD is a tremendous
cognitive burden on the human schedulers who must take into account all of the
scheduling complexities (e.g., train timings, switching time between trains, and
schedule lengths).

The TRUSTS system (Tactical Randomization for Urban Security in Transit
Systems) models the patrolling problem as a leader–follower Stackelberg game [28].
The leader (LASD) pre-commits to a mixed strategy patrol (a probability distribu-
tion over all pure strategies), and riders observe this mixed strategy before deciding
whether to buy the ticket or not. Both ticket sales and fines issued for fare evasion
translate into revenue for the government. Therefore the optimization objective for
the leader is to maximize total revenue (total ticket sales plus penalties). Urban
transit systems, however, present unique computational challenges since there are
exponentially many possible patrol strategies, each subject to both the spatial
and temporal constraints of travel within the transit network under consideration.
To overcome this challenge, TRUSTS uses a compact representation which captures
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Fig. 2.3 The terrorist attacks of 2008 in Mumbai

the spatial as well as temporal structure of the domain. The LASD is currently
testing TRUSTS in the LA Metro system by deploying patrols according to the
generated schedules and measuring the revenue recovered.

2.3.6 Future Applications

Beyond the deployed and emerging applications above are a number of different
application areas. One such area of great importance is securing urban city networks,
transportation networks, computer networks and other network centric security
domains. For example, after the terrorist attacks in Mumbai of 2008 [29] (refer
Fig. 2.3), the Mumbai police have started setting up vehicular checkpoints on roads.
We can model the problem faced by the Mumbai police as a security game between
the Mumbai police and an attacker. In this urban security game, the pure strategies
of the defender correspond to allocations of resources to edges in the network—for
example, an allocation of police checkpoints to roads in the city. The pure strategies
of the attacker correspond to paths from any source node to any target node—for
example, a path from a landing spot on the coast to the airport.
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Another area is protecting forests [30], where we must protect a continuous forest
area from extractors by patrols through the forest that seek to deter such extraction
activity. With limited resources for performing such patrols, a patrol strategy will
seek to distribute the patrols throughout the forest, in space and time, in order to
minimize the resulting amount of extraction that occurs or maximize the degree of
forest protection. This problem can be formulated as a Stackelberg game and the
focus is on computing optimal allocations of patrol density [30].

Another potential application is police patrols for crime suppression which is a
data-intensive domain [31]. Thus, it would be promising to use data mining tools
on a database of reported crimes and other events to identify the locations to be
patrolled, the times at which the game changes, and the types of attackers faced. The
idea is to exploit temporal and spatial patterns of crime in the area to be patrolled to
determine the priorities on how to use the limited security resources. However, even
with all of these applications, we have barely scratched the surface of possibilities in
terms of potential applications for multiagent researchers for applying game theory
for security.

The Stackelberg game framework can also be applied to adversarial domains
that exhibit “contagious” actions for each player. For example, word-of-mouth
advertising/viral marketing has been widely studied by marketers trying to un-
derstand why one product or video goes “viral” while others go unnoticed [32].
Counter-insurgency is the contest for the support of the local leaders in an armed
conflict and can include a variety of operations such as providing security and
giving medical supplies. Just as in word-of-mouth advertising and peacekeeping
operations, these efforts carry a social effect beyond the action taken that can
cause advantageous ripples through the neighboring population. Moreover, multiple
intelligent parties attempt to leverage the same social network to spread their
message, necessitating an adversary-aware approach to strategy generation. Game-
theoretic approaches can be used to generate resource allocations strategies for such
large-scale, real world networks. This interaction can be modeled as a graph with
one player attempting to spread influence while the other player attempts to stop the
probabilistic propagation of that influence by spreading their own influence. This
“blocking” problem models situations faced by governments/peacekeepers combat-
ting the spread of terrorist radicalism and armed conflict with daily/weekly/monthy
visits with local leaders to provide support and discuss grievances [33].

Game-theoretic methods are also appropriate for modeling resource allocation in
cybersecurity [34] such as packet selection and inspection for detecting potential
threats in large computer networks [35]. The problem of attacks on computer
systems and corporate computer networks gets more pressing each year as the
sophistication of the attacks increases together with the cost of their prevention.
A number of intrusion detection and monitoring systems are being developed, e.g.,
deep packet inspection method that periodically selects a subset of packets in a
computer network for analysis. However, there is a cost associated with the deep
packet inspection, as it leads to significant delays in the throughput of the network.
Thus, the monitoring system works under a constraint of limited selection of a
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fraction of all packets which can be inspected. The attacking/protecting problem
can be formulated as a game between two players: the attacker (or the intruder),
and the defender (the detection system) [35]. The intruder wants to gain control
over (or to disable) a valuable computer in the network by scanning the network,
hacking into a more vulnerable system, and/or gaining access to further devices on
the computer network. The actions of the attacker can therefore be seen as sending
malicious packets from a controlled computer (termed source) to a single or multiple
vulnerable computers (termed targets). The objective of the defender is to prevent
the intruder from succeeding by selecting the packets for inspection, identifying
the attacker, and subsequently thwarting the attack. However, packet inspections
cause unwanted latency and hence the defender has to decide where and how to
inspect network traffic in order to maximize the probability of a successful malicious
packet detection. The computational challenge is efficiently computing the optimal
defending strategies for such network scenarios [35].

2.4 Scaling Up To Real-World Problem Sizes

Real world problems, like the FAMS and urban road networks, present billions of
pure strategies to both the defender and the attacker. Such large problem instances
cannot even be represented in modern computers, let alone solved using previous
techniques. We now describe models and algorithms that compute optimal defender
strategies for massive real-world security domains. In particular, we describe the
following algorithms: (a) ASPEN, an algorithm to compute strong Stackelberg
equilibria (SSE) in domains with a very large number of pure strategies (up to
billions of actions) for the defender [23]; (b) RUGGED, an algorithm to compute the
optimal defender strategy in domains with a very large number of pure strategies
for both the defender and the attacker [36]; and (c) a hierarchical framework for
Bayesian games that is applicable to all Stackelberg solvers, that can be combined
with the strategy generation techniques of ASPEN [17]. These algorithms provide
scale-ups in real-world domains by efficiently analyzing the strategy space of
the players. ASPEN and RUGGED use strategy generation: the algorithms start by
considering a minimal set of pure strategies for both the players (defender and
attacker). Pure strategies are then generated iteratively, and a strategy is added
to the set only if it would help increase the payoff of the corresponding player
(a defender’s pure strategy is added if it helps increase the defender’s payoff). This
process is repeated until the optimal solution is obtained. On the other hand, the
hierarchical approach pre-processes the Bayesian Stackelberg game and eliminates
strategies that can never be the best response of the players. This approach of
strategy generation and elimination not only provides the required scale-ups, but
also the mathematical guarantees on solution quality. Finally, in this section, we also
describe the d:s ratio, an algorithm-independent property of security game instances
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Algorithm 1: Strategy generation in ASPEN

1. Initialize P // initialize, P: set of pure strategies of the defender
2. Solve Master Problem // compute optimal defender mixed strategy, given P
3. Calculate cost coefficients from solution of master
4. Update objective of slave problem with coefficients

// compute whether a pure strategy will increase defender’s payoff
5. Solve Slave Problem // generate the pure strategy that is likely to increase
the defender’s payoff the most
if Optimal solution obtained then

6. Return (x,P)
else

7. Extract new pure strategy and add to P
8. Repeat from Step 2

that influences the hardness of computation for the given problem instance and is
robust across domains, domain representations, algorithms and underlying solvers.

2.4.1 Scaling Up with Defender Pure Strategies

In this section, we describe how ASPEN generates pure strategies for the defender
in domains where the number of pure strategies of the defender can be prohibitively
large. As an example, let us consider the problem faced by the Federal Air Marshals
Service (FAMS). There are currently tens of thousands of commercial flights flying
each day, and public estimates state that there are thousands of air marshals that
are scheduled daily by the FAMS [37]. Air marshals must be scheduled on tours
of flights that obey logistical constraints (e.g., the time required to board, fly, and
disembark). An example of a valid schedule is an air marshal assigned to a round
trip tour from Los Angeles to New York and back.

ASPEN [23] casts this problem as a security game, where the attacker can choose
any of the flights to attack, and each air marshal can cover one schedule. Each
schedule here is a feasible set of targets that can be covered together; for the
FAMS, each schedule would represent a flight tour which satisfies all the logistical
constraints that an air marshal could fly. A joint schedule then would assign every
air marshal to a flight tour, and there could be exponentially many joint schedules
in the domain. A pure strategy for the defender in this security game is a joint
schedule. As mentioned previously, ASPEN employs strategy generation since all
the defender pure strategies (or joint schedules) cannot be enumerated for such
a massive problem. ASPEN decomposes the problem into a master problem and
a slave problem, which are then solved iteratively, as described in Algorithm 1.
Given a limited number of pure strategies, the master solves for the defender and
the attacker optimization constraints, while the slave is used to generate a new pure
strategy for the defender in every iteration.
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Fig. 2.4 Strategy generation employed in ASPEN: The schedules for a defender are generated
iteratively. The slave problem is a novel minimum-cost integer flow formulation that computes the
new pure strategy to be added to P; J4 is computed and added in this example

The iteratively process of Algorithm 1 is graphically depicted in Fig. 2.4. The
master operates on the pure strategies (joint schedules) generated thus far (Step 2),
which are represented using the matrix P. Each column of P, J j, is one pure strategy
(or joint schedule). An entry Pi j in the matrix P is 1 if a target ti is covered
by joint-schedule J j, and 0 otherwise. The objective of the master problem is to
compute x, the optimal mixed strategy of the defender over the pure strategies in P.
The objective of the slave problem is to generate the best joint schedule to add
to P (Step 5). The best joint schedule is identified using the concept of reduced
costs [38] (Step 3–4), which measures if a pure strategy can potentially increase the
defender’s expected utility (the details of the approach are provided in [23]). While
a naı̈ve approach would be to iterate over all possible pure strategies to identify
the pure strategy with the maximum potential, ASPEN uses a novel minimum-cost
integer flow problem to efficiently identify the best pure strategy to add. ASPEN

always converges on the optimal mixed strategy for the defender; the proof can be
found in [23].

Employing strategy generation for large optimization problems is not an “out-of-
the-box” approach, the problem has to be formulated in a way that allows for domain
properties to be exploited. The novel contribution of ASPEN is to provide a linear
formulation for the master and a minimum-cost integer flow formulation for the
slave, which enable the application of strategy generation techniques. Additionally,
ASPEN also provides a branch-and-bound heuristic to reason over attacker actions.
This branch-and-bound heuristic provides a further order of magnitude speed-up,
allowing ASPEN to handle the massive sizes of real-world problems.



2 Security Games Applied to Real-World: Research Contributions and Challenges 29

Fig. 2.5 Strategy Generation employed in RUGGED: The pure strategies for both the defender and
the attacker are generated iteratively

2.4.2 Scaling Up with Defender and Attacker Pure Strategies

In this section, we describe how RUGGED generates pure strategies for both the
defender and the attacker in domains where the number of pure strategies of the
players are exponentially large. Let us consider as an example the urban network
security game.

Here, strategy generation is required for both the defender and the attacker since
the number of pure strategies of both the players are prohibitively large. Figure 2.5
shows the working of RUGGED: here, the minimax module generates the optimal
mixed strategies ⟨x,a⟩ for the two players, whereas the two best response modules
generate new strategies for the two players respectively. The rows Xi in the figure
are the pure strategies for the defender, they would correspond to an allocation of
checkpoints in the urban road network domain. Similarly, the columns A j are the
pure strategies for the attacker, they represent the attack paths in the urban road
network domain. The values in the matrix represent the payoffs to the defender.
RUGGED models the domain as a zero-sum game, and computes the minimax
equilibrium, since the payoff of the minimax strategy is equivalent to the SSE payoff
in zero-sum games [39].

The contribution of RUGGED is to provide the mixed integer formulations
for the best response modules which enable the application of such a strategy
generation approach. RUGGED can compute the optimal solution for deploying up to
4 resources in real-city network with as many as 250 nodes within a reasonable time
frame of 10 h (the complexity of this problem can be estimated by observing that
both the best response problems are NP-hard themselves [36]). While enhancements
to RUGGED are required for deployment in larger real-world domains, RUGGED has
opened new possibilities for scaling up to larger games.
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Fig. 2.6 Hierarchical approach for solving Bayesian Stackelberg games. (a) Attacker action tree,
for a Bayesian game with attackers of two types, with two attacker actions each, (b) Hierarchical
game tree, decomposing a Bayesian Stackelberg game with 4 types into 4 restricted games with
one type each

2.4.3 Scaling Up with Attacker Types

The different preferences of different attacker types are modeled through Bayesian
Stackelberg games. Computing the optimal leader strategy in Bayesian Stackelberg
game is NP-hard [14], and polynomial time algorithms cannot achieve approxi-
mation ratios better than O(types) [40]. We now describe HBGS, a hierarchical
technique for solving large Bayesian Stackelberg games that decomposes the entire
game into many hierarchically-organized restricted Bayesian Stackelberg games;
it then utilizes the solutions of these restricted games to more efficiently solve the
larger Bayesian Stackelberg game [17].

Figure 2.6a shows the attacker action tree (a tree depicting all possible
pure strategies of an attacker in a Bayesian game, arranged as a tree) of an example
Bayesian Stackelberg game with 2 types and 2 actions per attacker type. The leaf
nodes of this tree are all the possible action combinations for the attacker in this
game, for example, leaf [1,1] implies that the attackers of both types λ1 and
λ2 chose action a1. All the leaves of this tree (i.e. all combinations of attacker
strategies for all attacker types) need to be evaluated before the optimal strategy
for the defender can be computed. This tree is typically evaluated using branch-
and-bound. This requirement to evaluate the exponential number of leaves (or pure
strategy combinations) is the cause of NP-hardness of Bayesian Stackelberg games;
indeed the performance of algorithms can be improved if leaves can be pruned by
pre-processing.

The overarching idea of hierarchical structure is to improve the performance
of branch-and-bound on the attacker action tree (Fig. 2.6a) by pruning leaves of
this tree. It decomposes the Bayesian Stackelberg game into many hierarchically-
organized smaller games, as shown by an example in Fig. 2.6b. Each of the restricted
games (“child” nodes in Fig. 2.6b) consider only a few attacker types, and are
thus exponentially smaller that the Bayesian Stackelberg game at the “parent”.
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For instance, in this example, the Bayesian Stackelberg game has 4 types
(⟨λ1,λ2,λ3,λ4⟩) and it is decomposed into 4 restricted games (leaf nodes) with
each restricted game having exactly 1 attacker type. The solutions obtained for the
restricted games at the child nodes of the hierarchical game tree are used to provide:
(a) pruning rules, (b) tighter bounds, and (c) efficient branching heuristics to solve
the bigger game at the parent node faster.

Such hierarchical techniques have seen little application towards obtaining
optimal solutions in Bayesian games, while Stackelberg settings have not seen any
application of such hierarchical decomposition. This hierarchical idea of HBGS
has also been combined with the strategy generation of ASPEN by the HBSA
algorithm [17], which is now opening new possibilities to handle uncertainty in
large games.

2.4.4 Characterizing Hard Security Game Problem Instances

In this section, we will focus on the runtime required by the different algorithms that
compute solutions for instances of security games for three of the domains described
above: the LAX or ARMOR domain, the FAMS or IRIS domain and the Coast Guard
or PROTECT domain. We will describe the d:s ratio, a domain-spanning measure
of the density of defender coverage in any security problem. We will then present
results that show that the computationally hardest problem instances of security
games occur when this ratio is 0.5.

However, first lets look at the runtime required by the different algorithms that
compute solutions for different security domains. Figure 2.7 shows the runtime for
computing solutions using DOBSS, ASPEN and a multiple-attacker branch-and-price
algorithm for the ARMOR, IRIS and PROTECT1 domains respectively. The x-axis
in each figure shows the number of available resources to the defender, and the
y-axis shows the runtime in seconds. In the ARMOR and the IRIS domains, we
define the number of resources as the number of officers available to the defender;
in the PROTECT domain, we define it as the maximum feasible tour length. These
graphs show that there is no unified value of the number of defender resources
which makes security game instances hard to solve. Even normalizing the number
of resources by the number of targets shows similar inconsistencies across different
domains.

We now describe the concept of the deployment-to-saturation (d:s) ratio [41],
a concept that unifies the domain independent properties of problem instances across
different security domains. Specifically, this concept of d:s ratio has been applied
to the three security domains described above, eight different MIP algorithms

1The deployed application of PROTECT uses a quantal response model whereas the multiple
attacker branch-and-price algorithm computes SSE as originally defined [41]. Here, by the
PROTECT domain, we refer to the security domain where defender has to execute patrols that
are bounded by their tour length.
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Fig. 2.7 Average running time of DOBSS, ASPEN and multiple-attacker branch-and-price algo-
rithm for SPNSC, SPARS and SPPC domains respectively

(introduced in literature for these three domains [41]), five different underlying
MIP solvers, two different equilibrium concepts in Stackelberg security games
(ε-SSE [42] being the second equilibrium concept), and a variety of domain sizes
and conditions.

More specifically, the deployment-to-saturation (d:s) ratio is defined in terms of
defender resources, a concept whose precise definition differs from one domain to
another. Given this definition, deployment denotes the number of defender resources
available to be allocated, and saturation denotes the minimum number of defender
resources such that the addition of further resources beyond this point yields no
increase in the defender’s expected utility. As mentioned earlier, for the ARMOR and
the IRIS domains, deployment denotes the number of available security personnel,
whereas saturation refers to the minimum number of officers required to cover all the
targets with a probability of 1. For the PROTECT domain, deployment denotes the
maximum feasible tour length, while saturation denotes the minimum tour length
required by the team of defender resources such that the team can tour all the targets
with a probability of 1. Sample results for these three domains are shown in Fig. 2.8,
where the x-axis is the d:s ratio and the primary y-axis is runtime in seconds. The
secondary y-axis and the dashed lines show a phase transition that we describe later.
The important deduction to draw from these graphs is that the hardest computation
is required when the d:s ratio is close to 0.5.

There are two important implications of this finding. First, new algorithms
should be compared on the hardest problem instances; indeed, most previous
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Fig. 2.8 Average runtime for computing the optimal solution for an example setting for all the
three security domains, along with the probability p plotted on the secondary y-axis. The vertical
dotted line shows d:s = 0.5

research has compared the runtime performance of algorithms only at low d:s
ratios, where problems are comparatively easy [41]. Second, this computationally
hard region is the point where optimization offers the greatest benefit to security
agencies, implying that problems in this region deserve increased attention from
researchers [41]. Furthermore, we present an analysis of the runtime results using
the concept of a phase transition in the decision version of SSE optimization
problem.

All the runtime results show an easy-hard-easy computational pattern as the d:s
ratio increases from 0 to 1, with the hardest problems at d:s = 0.5. Such easy–hard–
easy patterns have also been observed in other NP-complete problems, most notably
3-SAT [43, 44]. In 3-SAT, the hardness of the problems varies with the clause-
to-variable (c/v) ratio, with the hardest instances occurring at about c/v = 4.26.
The SAT community has used the concept of phase transitions to better understand
this hardness peak. Phase transitions are defined for decision problems; and the
decision version SSE(D) of the SSE optimization problem asks whether there exists
a defender strategy that guarantees expected utility of at least the given value D.

The results plotting the phase transition are also shown in Fig. 2.8. The x-axis
shows the d:s ratio, the primary y-axis shows the runtime in seconds, and the
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secondary y-axis shows the probability p of finding a solution to SSE(D∗). D∗ was
chosen by computing the median defender utility for 100 random problem instances
for the domain [41]. The runtimes are plotted using solid lines, and p is plotted
using a dashed line. Figure 2.8a presents results for the DOBSS algorithm [13] for
the ARMOR domain for 10 targets and 2 and 3 attacker types. As expected, the
d:s ratio of 0.5 corresponds with p = 0.51 as well as the computationally hardest
instances; more interestingly, p undergoes a phase transition as the d:s grows.
Similarly, Fig. 2.8b shows results for the ASPEN algorithm [23] for the IRIS domain
with 500 schedules, 2 targets per schedule and 50 and 100 schedules, and Fig. 2.8c
shows results for the multiple attacker PROTECT domain [41] for 8 targets. In both
cases, we again observe a phase transition in p.

2.5 Open Research Issues

While the deployed applications have advanced the state of the art, significant
future research remains to be done. In the following, we highlight some key
research challenges, including scalability, robustness, human adversary modeling,
and mixed-initiative optimization. The main point we want to make is that this
research does not require access to classified information of any kind. Problems,
solution approaches and datasets are well specified in the papers discussed below,

Scalability: The first research challenge is improving the scalability of our algo-
rithms for solving Stackelberg (security) games. The strategy space of both the
defender and the attacker in these games may exponentially increase with the num-
ber of security activities, attacks, and resources. As we scale up to larger domains,
it is critical to develop newer algorithms that scale up significantly beyond the limits
of the current state of the art of Bayesian Stackelberg solvers. Driven by the growing
complexity of applications, a sequence of algorithms for solving security games
have been developed including DOBSS [13], ERASER [16], ASPEN [23], HBGS [17]
and RUGGED [36]. However, existing algorithms still cannot scale up to very large
scale domains such as scheduling randomized checkpoints in cities (while RUGGED

computes optimal solutions much faster than any of the previous approaches, much
work remains to be done for it to be applicable on a large urban road network).

Robustness: The second challenge is improving solutions’ robustness. Classical
game theory solution concepts often make assumptions on the knowledge,
rationality, and capability (e.g., perfect recall) of players. Unfortunately, these
assumptions could be wrong in real-world scenarios. Therefore, while computing
the defender’s optimal strategy, algorithms should take into account various un-
certainties faced in the domain, including payoff noise [45], execution/observation
error [46], uncertain capability [47]. While there are algorithms for dealing with
different types of uncertainties, there is no general algorithm/framework that can
deal with different types of uncertainty simultaneously. Furthermore, existing work
assumes that the attacker knows (or with a small noise) the defender’s strategy and
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there is no formal framework to model the attacker’s belief update process and how
it makes tradeoffs in consideration of surveillance cost, which remains an open
issue for in future research.

One required research direction with respect to robustness is addressing bounded
rationality of human adversaries, which is a fundamental problem that can affect the
performance of our game theoretic solutions. Recently, there has been some research
on applying ideas (e.g., prospect theory [48], and quantal response [24]) from
social science or behavioral game theory within security game algorithms [42, 49].
Previous work usually applies existing frameworks and sets the parameters of
these frameworks by experimental tuning or learning. However, in real-world
security domains, we may have very limited data, or may only have some limited
information on the biases displayed by adversaries. It is thus still a challenging
problem to build high fidelity human attacker models that can address human
bounded rationality. Furthermore, since real-world human attackers are sometimes
distributed coalitions of socially, culturally and cognitively-biased agents, acting
behind a veil of uncertainty, we may need significant interdisciplinary research to
build in social, cultural and coalitional biases into our adversary models.

Mixed-Initiative Optimization: Another challenging research problem in security
games is mixed-initiative optimization in which human users and software assistants
collaborate to make security decisions [50]. There often exist different types of
constraints in security applications. For instance, the defender always has resource
constraints, e.g., the numbers of available vehicle checkpoints, canine units, or
air marshals. In addition, human users may place constraints on the defender’s
actions to affect the output of the game when they are faced with exceptional
circumstances and extra knowledge. For instance, in the ARMOR system there
could be forced checkpoints (e.g., when the Governor is flying) and forbidden
checkpoints. Existing applications simply compute the optimal solution to meet all
the constraints (if possible). Unfortunately, these user defined constraints may lead
to poor (or infeasible) solutions due to the users’ bounded rationality and insufficient
information about how constraints affect the solution quality. Significantly better
solution quality can be obtained if some of these constraints can be relaxed.
However, there may be infinitely many ways of relaxing constraints and the software
assistant may not know which constraints can be relaxed and by how much, as well
as the real-world consequences of relaxing some constraints.

Thus, it is promising to adopt a mixed-initiative approach in which human users
and software assistants collaborate to make security decisions. However, designing
an efficient mixed-initiative optimization approach is not trivial and there are five
major challenges. First, the scale of security games and constraints prevent us from
using an exhaustive search algorithm to explore all constraint sets. Second, the
user’s incomplete information regarding the consequences of relaxing constraints
requires preference elicitation support. Third, the decision making of shifting
control between the user and the software assistant is challenging. Fourth, it is
difficult to evaluate the performance of a mixed-initiative approach. Finally, it is
a challenging problem to design good user interfaces for the software assistant to
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explain how constraints affect the solution quality. What remains to be done for
the mixed-initiative approach includes sensitivity analysis for understanding how
different constraints affect the solution quality, inference/learning for discovering
directions of relaxing constraints, search for finding constraint sets to explore,
preference elicitation for finding the human user’s preference of different constraint
sets, and interface design for explaining the game theoretic solver’s performance.

Multi-objective Optimization: In existing applications such as ARMOR, IRIS and
PROTECT, the defender is trying to maximize a single objective. However, there are
domains where the defender has to consider multiple objectives simultaneously. For
example, the Los Angeles Sheriff’s Department (LASD) needs to protect the city’s
metro system from ticketless travelers, common criminals, and terrorists. From the
perspective of LASD, each one of these attacker types provides a unique threat (lost
revenue, property theft, and loss of life). Given this diverse set of threats, selecting a
security strategy is a significant challenge as no single strategy can minimize the
threat for all attacker types. Thus, tradeoffs must be made and protecting more
against one threat may increase the vulnerability to another threat. However, it is not
clear how LASD should weigh these threats when determining the security strategy
to use. One could attempt to establish methods for converting the different threats
into a single metric. However, this process can become convoluted when attempting
to compare abstract notions such as safety and security with concrete concepts such
as ticket revenue.

Multi-objective security games (MOSG) have been proposed to address the
challenges of domains with multiple incomparable objectives [51]. In an MOSG,
the threats posed by the attacker types are treated as different objective functions
which are not aggregated, thus eliminating the need for a probability distribution
over attacker types. Unlike Bayesian security games which have a single optimal
solution, MOSGs have a set of pareto-optimal (non-dominated) solutions which is
referred to as the Pareto frontier. By presenting the pareto frontier to the end user,
they are able to better understand the structure of their problem as well as the trade-
offs between different security strategies. As a result, end users are able to make
a more informed decision on which strategy to enact. Existing approaches so far
assume that each attacker type has a single objective and there is no uncertainty
regarding each attacker type’s payoffs. It is challenging to develop algorithms
for solving multi-objective security games with multiple attacker objectives and
uncertain attacker payoffs.

In addition to the above research challenges, there are other on-going challenges
such as preference elicitation for acquiring necessary domain knowledge in order to
build game models and evaluation of the game theoretic applications [52].
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