
Summary Homework 3

Lectures 1-14 (Max (useful) score: 110)

16-311: Introduction to Robotics (Fall 2017)

OUT: October 3, 2017, at 1:00am

DUE: October 13, 2017 at 9:00am - Available late days: 1

Instructions

Homework Policy

Homework is due on autolab by the posted deadline. As a general rule, you have a total of 8 late days. For
this homework you cannot use more than 1 late day. No credit will be given for homework submitted after the
late day. After your 8 late days have been used you will receive 20% off for each additional day late.

You can discuss the exercises with your classmates, but you should write up your own solutions. If you find a
solution in any source other than the material provided in the course, you must mention the source.

Rules for grading: The homework consists of 6 Sections. Each section addresses one set of related topics. You
have to answer (in a non-trivial way) to at least one question per section. If you don’t answer the question
from a section, your score will be decreased by the number of points of the question with the higher number of
points in that Section. The grading scale is:
[50, 60]→ D, [61, 70]→ C, [71, 90]→ B, [91, 110)→ A, [110, 228]→ A+.

In general, even if you don’t answer a question, read it and try to understand the reasons why the question
is of theoretical/practical importance, and try to figure out how you would answer it. This will help with the
midterm exam. Moreover, keep in mind that some of the answered questions will be re-presented in another
homework.

Submission

Create a tar archive of the folder with your ROS packages/nodes and submit it to Homework 3 on autolab. You
should also have one PDF file in your archive, with an explaination of your results regarding the experiments
with the robot, and the instructions for running the nodes, if any.
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1 Holonomicity, degrees of freedom, maneuverability, ICR (25 points)

1.1 Questions mix (10 points)

Which ones of the following statements are true or false? Add a brief justification of the answer.

1. A bicycle robot can be found in any arbitrary pose
[
x y θ

]T
in the plane.

2. A locked bicycle, with steering angle γ locked to γ = π/4 has one degree of maneuverability, and can
reach any arbitrary pose in its workspace.

3. A train robot (e.g., an automatic driving subway train) is non holonomic.

4. A tricycle has higher degrees of maneuverability of a unicycle.

5. A unicycle has two degrees of freedom.

6. An unsteered cart has two degrees of freedom in the plane (an unsteered cart is a car-like vehicle with all
four fixed standard wheels, their wheel planes are aligned with each other).

7. The workspace of any planar robot that has less than or equal to 2 degrees of maneuverability is a circle.

8. A robot with 3 degrees of maneuverability is holonomic.
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9. A robot with 3 degrees of maneuverability can achieve any path and any trajectory in its workspace.

10. An hovercraft with two parallel but not collinear propellers is an underactuated system.

11. A robot arm with 10 links is an overactuated system in the 3D workspace.

12. A unicycle is a fully actuated system.

13. A bicycle robot has full control over its ICR (i.e., it can place it anywhere in the plane).

1.2 Integration of kinematic constraints (6 points)

Let’s consider the unsteered cart robot mentioned above. For simplicity, let’s assume that in the map reference

system M the pose of the cart is
[
0 0 0

]T
(i.e., it is at the origin, heading in the X+ direction). Prove that

the robot is holonomic. You have to write down the kinematic constraints equations and show that it’s possible
to integrate them and reduce them to equations in the configuration variables only.

1.3 ICR of articulated vehicle (5 points)

Consider the articulated vehicle shown in the figure. All wheels are fixed standard ones, the vehicle steers by
controlling the angle φ. Compute the coordinates of the ICR (as a function of a, b, φ) given that a vehicle pose

qM (t) =
[
x y θ

]T
in M is measured at the middle of the virtual front axis.

Figure 1: An articulated vehicle.

1.4 ICR of a multi-link robotic arm (4 points)

Consider the multibar system in the figure. Point A is stationary, joint B is prismatic. Find the relative position
of the ICR with respect to the robot, and compute the angular velocities around the ICR for the mobile links
BC and CD based on the lengths and angles shown in the figure and knowing that the instantaneous velocity
of B is vB = 10 m/s.

2 Forward kinematics (15 points)

2.1 Differential drive robot (9 points)

Let’s consider a differential drive robot like our Turtlebot. It is a two-wheeled differential drive one with two
castor wheels for stability. Each fixed standard wheel has a radius of r = 0.0351 m and the distance between
wheels is 2` = 0.23 m. The maximum speed is 0.7 m/s.
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Figure 2: A multi-linkage system.

At time t = 0 robot’s pose in {M} is: qM (0) =
[
0 0 π/3

]T
, and q̇M (0) =

[
0 0 0

]T
.

Let’s assume that velocities vl = 0.5 m/s and vr = 0.75 m/s are applied instantaneously to the left and right
wheels respectively, and are then maintained constant.

1. Write down the equations and compute the value of the instantaneous generalized velocity vector q̇M in
the map frame and in the base_link local robot frame.

2. Compute the coordinates of the ICR around which the robot is performing a circular motion and the
angular velocity of rotation around the ICR.

3. Still assuming ideal conditions, compute the robot pose qM (t) at time t = 10 seconds.

2.2 Car-like robot (6 points)

This time, let’s consider a car-like robot, abstracted using the bicycle model such that the distance between the

axels of the front and rear wheels is L = 0.57 m. At time t = 0 robot’s pose in {M} is: qM (0) =
[
1 0 π/4

]T
,

and the vehicle is initially at rest. Robot’s configuration is defined by four parameters, q′(t) =
[
x y θ γ

]T
,

where γ is the steering angle of the front wheel, γ(0) = 0.

1. Let’s assume that a linear (traction) velocity v = 0.5 m/s is applied instantaneously and the front wheels
are steered instantaneously by an angle γ = 30 degrees. These controls are maintained for 2 seconds.

At time t = 2, could the robot have reached pose qM (0) =
[
2 2 π/6

]T
? You don’t have to solve the

kinematic equations in full (that would be too easy), but have to provide a few compelling arguments
(with numbers) that show whether this could or could not be.

2. Consider the following velocity vector: q̇M =
[
2 3 0

]T
. Would this be an admissible velocity at t = 0

for the robot given its pose and configuration at t = 0? If not, explain why (with equations) and tell
what would be a parametric set of admissible velocities for the robot at t = 0.

3 Odometry for online pose estimation (15 points)

Let’s consider our differential robot (parameters are as in question 2.1). Wheels’ encoders are based on mea-
suring 2578.33 ticks per wheel revolution. The encoder values are 16-bit numbers which means if they exceed
65535 they roll back to zero and restart counting. Encoder readings are published at a rate of 50Hz.

The following values are 11 (subsampled) measures from the right and left wheel encoders respectively, taken
at consecutive times ti + ∆t, i = 0, . . . , 10, ∆t = 1s, t0 = 0.

Right Wheel: 0 2550 5450 11240 17873 23467 28890 30001 30013 30014 30017

Left Wheel: 0 2412 5722 11357 17025 22980 28720 31982 36201 39302 43112

At t0 the robot was not moving and was at pose q = M
[
0 0 0

]T
in the map fixed reference system M

The robot uses encoders information for online pose estimation.
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1. (9 points) Compute robot pose at time t10 in M using the information from wheel encoders. This means
that you have to compute robot odometry, and you have to use both an exact and an approximate way
to perform numeric integration (the latter would likely be the one used by the robot in practice if the full
50 Hz stream of data is used, or if the robot has little computing power).

Report the code used for computing both the odometry estimates and report the numerical results.
Discuss the difference between the result obtained with the selected approximate approach and that from
the exact numeric integration.

2. (6 points) Let’s assume, ideally, that all wheels’ commands are actuated in the real world with no errors
or deviations from what expected. However, robot’s encoders readings come with white noise Gaussian
errors εL and εR, that are independent, have 0 mean and have the same stationary variance σ2

L = σ2
R = 121

ticks2 (that corresponds to a standard deviation of 11 ticks, that in turn corresponds to an error of ±0.001
m in terms of robot motion according to wheels’ geometry).

Compute the error in the odometry estimate for the position (xt, yt) of the robot in M at time t = t10.

4 Inverse kinematics tasks in open loop (42 points)

Let’s stick to a differential drive robot as described in the previous question (which is our Turtlebot, by the
way) and let’s consider a number of different scenarios.

4.1 Path to final pose (20 points)

At time t = 0 robot’s pose is: qM (0) =
[
5 0 0

]T
, and from a dynamics point of view, the robot is at rest in

the inertial map frame M. No rotation in place are accepted as part of the solutions below.

4.1.1 Use geometry (3 points)

Given a target pose defined as qM (t > 0) =
[
5 15 π

]T
(in meters and degrees), compute an admissible path

q(s), s ∈ [0, 1], in parametric form for the robot using simple geometric considerations. Also define the control
commands in v(t) and ω(t) such that the robot can reach the desired pose following the path.

4.1.2 Use inverse kinematic equations (3 points)

For the same task of the previous question, define the path by the direct solution of the inverse kinematic
equations. Keep in mind that in this simple case the velocity profiles can be constant (until the final pose is
reached, where velocities must go to zero).

4.1.3 Use differential flatness (10 points)

For the same task of the previous questions, compute an admissible path q(s), s ∈ [0, 1], by exploiting differential
flatness. Use polynomials of degree higher or equal to 2 to define smooth space trajectories. Describe your
choice for the polynomials and show the obtained paths for different choices of the free parameters that define
the geometric speeds at the beginning and at the end of the path. Compute also the control commands in v(t)
and ω(t) such that the robot can reach the desired pose following the path.

4.1.4 Implement in ROS/Gazebo (4 points)

Implement your solution from the previous question in Gazebo and measure the error for reaching the desired
final pose. Draw the expected and the achieved path.

* For dealing with this question and with a number of questions below, that require to know robot’s state,
you have two options for measuring the error (i.e., to assess the robot pose in M at a time t). One is realistic,
the other is “idealistic”. Realistic one: obtain the pose from /odom topic (be sure that the initial pose in
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the odometry frame is the same as in the map frame, otherwise always apply a relative pose transformation).
Idealistic one: get robot’s ground truth directly from Gazebo. This second option won’t be available when you
will have to test your controller on the real robot, therefore, it might be a good idea to work directly with
odometry (which is expected to be quite reliable on the Turtlebot).

4.2 Path to final pose under more challenging conditions (22 points)

4.2.1 Low friction, implement in ROS/Gazebo (5 points)

Implement your solution from the previous question in Gazebo as before, but now set the friction coefficients
of the ground plane to very low values. In the .sdf or .world file describing the environment, look for the
ground_plane model and change the values of the parameters mu and mu2 to values near 1 (0 corresponds to
a frictionless ground). You will experience significant deviations. Investigate how changing the degree of the
polynomials and/or the free parameters affect robustness and stability.

4.2.2 Reverse pose (7 points)

The robot starts in the same initial pose, but now the target pose is qM (t > 0) =
[
5 15 0

]T
. First

check whether the solution found answering question 4.1.3 works (of course, you need to recompute the paths
considering the new goal pose). If not, change the degree of the polynomials and the free parameters to find a
satisfactory solution. As before, show your results.

4.2.3 Reverse pose and low friction, implement in ROS/Gazebo (10 points)

Challenge yourself by trying out the new scenario in Gazebo with low friction. It will likely show a major
deviation between the actual and the expected path. You need to adjust the parameters of the path, that in
turn determines your velocity controls. Follow a procedure similar to that described for tuning a PID controller
(maybe use twiddle): define an appropriate error metric, start with some guessing for the parameters, perform
multiple experiments, iteratively adjust the parameters. Describe the process and show the results. Keep in
mind that you’re not doing feedback-based control, but you are only adjusting the response of your open loop
control.

5 Inverse kinematics tasks in closed loop (89 points)

5.1 Wall following (31 points)

Tasks involving wall following can be stated in different ways, depending on the context, including:

1. “Keep at distance D from the wall”, that assumes there is only one wall, otherwise it might be impossible
to accomplish the task.

2. “Don’t get closer than D to the/any wall”, that says to keep a minimal clearance from all walls. This
suffers from the same issues as the previous task in the case there are walls on both sides and their
distance is less than 2D. Therefore, an admissible request is “Don’t get closer than D to the/any wall
whenever feasible, otherwise, keep equal clearance from walls”.

3. “Keep maximum clearance from all walls”, which is equivalent to ask to follow a Voronoi path (we will
see this later on in the course). When the distance between two walls on two opposite sides is too large
this request would result in a quite inefficient path.

Let’s check how different approaches work on these types of tasks.

5.1.1 Bang-bang controller (7 points)

Consider an environment like the one shown in the figure, Left (You don’t need to replicate “exactly” the
scenario, a good approximation is more than enough, and this applies to all scenarios sketched in figures).
Implement and tune a bang-bang controller with hysteresis for performing task 1 in the previous list, with
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Figure 3: Wall-following scenarios. (Left) single wall on the left side. (Right) Corridor-like path, with two
opposite-side walls.

D = 1.5 m. You can assume to use any virtual sensor that returns a precise measure of error (i.e., the current
distance from the wall). Your robot should move with an average linear speed of 0.5 m/s. Apply some heuristic
as described in the previous section for tuning bang-bang parameters over multiple runs. Describe the procedure
and show your results (trajectory + quantification of the average error over time).

5.1.2 Bang-bang in ROS/Gazebo (5 points)

Build an equivalent environment in Gazebo and set a low friction parameter. This time the distance from the
wall is returned by /laserscan measures. Repeat controller tuning process and experiments.

5.1.3 PID controller (9 points)

For the same task, design, implement, and tune a PID controller. For using and updating the PID, you
can conveniently use the PID node provided by ROS http://wiki.ros.org/pid, or you can make your own
implementation. Again, you will need to define appropriate metrics (e.g., sum of errors, oscillations, . . . ) for
assessing how good/bad an experiment run is when evaluating a set of PID parameters.

5.1.4 PID controller for corridor navigation in ROS/Gazebo (10 points)

Consider now an environment equivalent to the one shown in the right part of the figure. Design a PID controller
that realizes task 2 in the list above for D = 1.1 m. Implement and tune the controller in Gazebo and report
experiment results.

5.2 Move to a point or to a pose (25 points)

5.2.1 Move to distance point, implement in ROS/Gazebo (10 points)

This is similar to the wall following case, but the objective is to let the robot stopping smoothly at a certain

distance from an obstacle. Let the robot start in qM (0) =
[
0 0 0

]T
with q̇M (0) =

[
0.7 0 0

]T
, and let a

large regular obstacle be placed at a distance d = 2 m, as shown in the figure. Define a PID controller that let
the robot smoothly and rapidly (in minimal time) arriving with zero velocity at precisely a distance D = 0.5
from the obstacle. Test the controller in Gazebo, assuming that the position of the obstacle in M is known.
Study the effectiveness of the controller under two different conditions to get the relative distance δrw(t) of the
robot with respect to the wall:

• δrw(t) is obtained from the measures from the on-board odometry (/odom);

• δrw(t) is obtained from the measures from the distance scanner (/laserscan).
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Figure 4: Scenario for the robot that has to smoothly and exactly stop at the desired distance from the obstacle.

5.2.2 Move to a pose, implement in ROS/Gazebo (15 points)

Let’s solve the problem considered in question 4.2.2 with a feedback-based approach for online motion control.
The robot starts in qM (0) =

[
5 0 0

]
and has to reach the target pose

[
5 15 0

]
. Define a P controller, tune

its parameters, and perform experiments in Gazebo. Based on a stability analysis on the linearized version of
the system dynamics, discuss the stability of the system vs. gains values.

5.3 Path and trajectory following (33 points)

5.3.1 Follow a path, implement in ROS/Gazebo (10 points)

Define an elliptic path centered in (0, 1.5), where the longer semi-axis (stretching long the x) has length 3 and

the shorter 1.5 (see figure, left). The robot starts in pose qM (0) =
[
5 0 0

]T
. Define and tune a PI controller

that makes the robot following the path. Implement and test it in Gazebo with a moderate friction level.

Figure 5: Left: Elliptic path that the turtlebot robot has to follow. Right: Circular trajectory to track.

5.3.2 Stability analysis (5 points)

Based on the linearization of the dynamic system for controlling the robot, discuss the asymptotic stability for
the values used for the gains.

5.3.3 Follow a trajectory, stability analysis, implement in ROS/Gazebo (18 points)

Instead of an ellipsis, let’s use a circular path of radius r = 3, centered in (0, 0), as shown in the right part of
the figure. Define a time parameter t ∈ [0, 70], by time t the robot has reached point (0, 3) on the circle and
then follows the circular path by making one full revolution every 40 seconds (which roughly corresponds to a
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tangential velocity of little less than 0.5 m/s). This means that the target trajectory is defined as follows:
(x(t), y(t)) = (0, 3) t ∈ [0, 10)

(x(t), y(t)) =

(
r cos

(
2π
40 t
)
, r sin

(
2π
40 t
))

t ∈ [10, 70]

Make use of the property of differential flatness to compute the kinematic inputs (in v and ω) for the robot
following the trajectory. However, to realize an effective trajectory tracking, feedback-based motion control is
required. At this aim, consider the tracking error and linearize its dynamics in order to define a linear feedback
law (a P controller).

Implement the linearized feedback controller and observe the result in Gazebo. Report the performed trajectory
and a measure of the error in trajectory tracking (first, define an appropriate error measure).

Compute the eigenvalues of the linearized system and discuss the stability of the system in terms of the values
assigned to the gains of the proportional controller (gains that you have to define through a trial-and-error
procedure).

6 Navigation and online planning with obstacles (42 points)

Consider the cluttered environment shown in the figure, that features a start and a goal position, and a number
of convex and concave obstacles. The robot has to navigate to reach the goal position using different approaches
(and knowledge). The robot always knows where the goal is.

Figure 6: A complex cluttered environment for robot planning and navigation.

6.1 Dynamic Window Approach, implement in ROS/Gazebo (12 points)

The robot has a map of the environment. Navigate to the goal using a Dynamic Window Approach. The
maximum speed is as usual 0.7 m/s. Discuss your design choices and implement the system in Gazebo. Show
the performed trajectory.

6.2 Potential Fields (10 points)

The robot has a map of the environment. The objective is to navigate to the goal using a Potential field
planning. Planning is done offline, meaning that first a potential field is computed for the scenario (in the
continuous world), then a gradient descent algorithm is performed on the resulting force field to define the
path. Make use of the force vectors to define the velocity vectors for the robot. Define and discuss all design
choices.

Is the computed path letting the robot reaching the goal?
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6.3 Randomized best-first, implement in ROS/Gazebo (10 points)

The robot makes use of its sensors (/laserscan) to make a local obstacle map. Iteratively use potential fields
to navigate towards the goal. Implement it in Gazebo and show the resulting path.

Local minima are an issue and might make the robot getting stuck, or not making any actual progress toward the
goal. Therefore, in order to overcome this (likely) issue, adopt a randomized best-first version of the potential
field approach, that requires a discretization of the search space. Below a pseudo-code for the randomized
best-first potential fields approach:

Randomized BestFirst PotentialFields(startState)

q ← startState

t← 0

Repeat:

If U(q) == 0:

Return (Success, q)

If too many iterations:

Return (Failure)

Else:

Find the neighbor qn of q with smallest U(qn)

If (U(qn) < U(q)):

q ← qn

t← 0

Else (qn has not yet been visited) AND (t < maxFillTime):

q ← qn AND remember qn

visited[] ← qn

t← t+ 1

Else:

k ← 0, qe ← q, t← 0

While (k < maxEscapeSteps OR U(qe) < U(q)):

qe ← RandomWalk(qe)

6.4 Best-first path smoothing, implement in ROS/Gazebo (3 points)

In the previous solution, because of discretization, the path might result zigzagging. A way to overcome
it is to perform some form of polynomial interpolation. Select one (e.g., cubic splines) and use it to have
smooth trajectories. You can use the scipy library that comes with easy to use functions for interpolation,
docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html.

6.5 Bug algorithms, implement in ROS/Gazebo (7 points)

Navigate to the goal using a bug algorithm. Select one bug algorithm (justify your choice) and implement it in
Gazebo. Obstacles are detected using data from /laserscan. Show the resulting path.
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