
Kalman Filters for Sensor fusion and Pose Estimation 5

(Max score: 40)

16-311: Introduction to Robotics (Fall 2017)

OUT: November 11, 2017, at 6:00pm

DUE: November 20, 2017 at 9:00am - Available late days: 1

Instructions

Homework Policy

Homework is due on autolab by the posted deadline. As a general rule, you have a total of 8 late days. For
this homework you cannot use more than 1 late day. No credit will be given for homework submitted after the
late day. After your 8 late days have been used you will receive 20% off for each additional day late.

You can discuss the exercises with your classmates, but you should write up your own solutions. If you find a
solution in any source other than the material provided in the course, you must mention the source.

Submission

Create a tar archive of the folder with your ROS packages/nodes and submit it to Homework 5 on autolab. You
should also have one PDF file in your archive, with an explaination of your results regarding the experiments
with the robot, and the instructions for running the nodes, if any.

Contents

1 Data filtering and fusion: laser scanner data (14 points) 1

2 EKF for robot localization and navigation with a landmark map (26 points) 2

1 Data filtering and fusion: laser scanner data (14 points)

The laser scanner data on our TurtleBot (that are obtained from the depth camera) can be used to detect
obstacles to safely navigate in the environment, create an occupancy map, and extract geometric features such
as lines. Unfortunately, measures are subject to noise and errors, that make them fluctuating over time.

Let’s focus on the use of the laser scan data for measuring the distance to nearby objects, and let’s assume that
all sensing uncertainties can be modeled in terms of Gaussian white noise. Therefore, we can use a Kalman
Filter to filter data streams and obtain more reliable estimates for object distances in the sensor space.

For the laser scan sensor, the ranges[] array returns a depth value for the presence (or not) of an object along
n = 640 radial directions, centered in the camera_link coordinate frame. If an object is detected at a distance
d along the i-th radial direction, the distance value is reported in ranges[i]. If nothing is detected (up to the
maximum range), a NaN is reported (or any arbitrary value over the declared ranges).

1. (7 points) Consider the case with the robot that stands still. The goal is to filter the data stream for each
one of the n radial measurements by using a KF. Consider a n-dimensional state vector ξ with components
that are all statistically independent from each other.

Describe the KF model that you have adopted, report the equations and the parameter, the choices for the
error models, and implement the code in ROS/Gazebo. For effective matrix manipulation, a suggestion
is to use the SciPy library.

1

For performing the experiments, in Gazebo, create a scene (or, better, multiple scenes) with a few complex
objects in front of the robot, similar to the one shown in the figure.

Figure 1: Complex scene. To the right, the view from the LaserScan on rviz.

Check the effect of the filter by observing the filtered scan image in rviz (we will discuss in the next class
how to do it). Show the behavior of the covariance estimates over time.

Set up a complex scene in the real world, and perform similar experiments. Your filter will be evaluated
on real-world scenes.

2. (7 points) Consider the same scenario as before, but now aggregate the measurement data in sectors,
considering 10 sectors of 64 contiguous data points each. Design and implement a KF as before for each
one of the 10 aggregated measurements. In this case, the filter will perform both data filtering and fusion
(of the 64 measurements).

Describe the filter and proceed as before for performing the experiments.

2 EKF for robot localization and navigation with a landmark map
(26 points)

The robot moves in a squared environment E of dimension 20× 20 m2. In the environment, n = 10 landmarks
are spread randomly. Each landmark is detectable by the robot using one of its on-board sensors. In particular,
the sensor returns the range ρ and bearing β of a landmark, in the sensor’s coordinate frame. A landmark can
be reliably sensed only when it is at a distance of less than 2.5 meters from the robot. For sake of simplicity,
let’s assume that the sensor also returns the identity i of the landmark.

A map of E, with landmarks’ positions, is given to the robot in the following format (the text is to explain the
numeric fields):

Id x y

1 x1 y1 (Coordinates of landmark 1)

2 x2 y2 (Coordinates of landmark 2)

.

n xn yn (Coordinates of landmark n)

The origin (0, 0) of the E map is placed in the center of the squared area. All measures are expressed in
meters.

The values ρi and βi correspond to the true range and bearing values corrupted by a sensing noise wk, which is
modeled as an additive Gaussian white noise. The two noise components are assumed to be uncorrelated.

The robot is given a path P to follow, expressed as a sequence of p points in Cartesian coordinates:

P = (x0, y0), (x1, y1), . . . , (xp, yp).

The robot starts in the initial pose ξ0 = (x0, y0, 0). The initial pose is known to the robot with zero error.

The task of the robot is to exploit the map and use an EKF to localize itself in the environment and navigate
accurately following the given path points. At the same time, the robot has to use its range sensors to avoid
collisions with the obstacles in E.

2

1. Design and implement an EKF that makes use of issued velocity controls and knowledge of the robot’s
kinematic equations to define state (i.e., pose) dynamics, and that exploits landmark observations (when
available) to adjust the state estimation.

At this aim, in Gazebo implement a virtual landmark sensor. Given the map and the ground truth about
robot position (obtained from a service, as we have already done in previous homework), the landmark
sensor returns the observation of the closest landmark within the sensing range, if any. The sensor returns
a triple (ρ, β, i). In order to simulate perception noise, the returned values must correspond to the true
range and bearing values but corrupted by a Gaussian noise according to the following covariance matrix
(units refer to meters and radians):

wk =
[
wρk wβk

]T ∼ N(0,Wk), Wk =

[
σ2
kρ 0

0 σ2
kβ

]
=

[
0.025 0

0 0.16

]

Assume that the landmark sensor can perform observations at a max frequency of 15Hz.

2. Test the EKF and the navigation task in simulation using the world configuration provided in the given
file ekf-navigation.world. The world features a number of box obstacles that must be avoided, and a
number of path points, that are shown by coke cans (red objects). The world and an example of path are
reported in the figure. The path is intended to show the order according to which the path points have
to be followed, starting from (0, 0) and moving NE. Note that the grid is 20 × 20, where each square is
a 1 × 1 m2. The path points are all located at corner points, such that their coordinates can be easily
computed.

Figure 2: The world to navigate.

You are free to place the n landmarks at randomly selected locations.

3. In order to navigate between path points, you have to use a feedback-based controller, similar to the one
of the previous homework. In this case, the pose is provided by the current estimate obtained by the

3

EKF.1 Note that in this case the environment features the presence of obstacles. For navigation between
path points, Let’s follow the approach suggested by DWA, but in a simplified way. Define two different
feedback-based controllers, one, Go-to-Goal, that brings the robot to the next point in the path, and
one, Avoid-Obstacle that makes the robot moving away from an obstacle, as detected using the laser scan
sensor. Then define a blending rule that each time moves the robot according to both controllers by
assigned different weights:

u = α(d)uGtG + (1− α(d))uAO

where α(d) = 1− e−δd, α(d) ∈ [0, 1], d is the distance to the current closest obstacle, and δ is a constant.
In practice, δ defines at which distance the weight of the obstacle avoidance controller becomes active
and how it grows. The controls u refer to the linear and angular velocities.

4. (8 points) Test EKF + Navigation in the real-world, creating a somehow equivalent scenario. In the class
it will be shown how to observe landmarks using the camera sensor. Landmarks will be made by using
AR visual tags similar to the ones shown in the figure.

Figure 3: Examples of visual tags.

In the report, provides the details about the design of the EKF, as well as of the feedback-based controllers.
Show the evolution of the error in pose estimation and try to quantify the error following the path points.

1Use the pose estimates from the /odom topic to check whether your EKF estimate is good or not (Odometry is precisely based
on an EKF using data from wheel encoders and IMUs).

4

	Data filtering and fusion: laser scanner data (14 points)
	EKF for robot localization and navigation with a landmark map (26 points)

