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TO BE DONE ...

Stability properties of linear systems
Linearization of previous control systems
Stability domain for feedback-based gains

Other types of controllers?



CONTROLLABILITY OF A DYNAMICAL SYSTEM

Time-invariant dynamical system with m control inputs u

x = f(x(t),u(t)), x€R”, ueR"

Control inputs are defined | | |
t) = Kx(t K feedback G t
according to a feedback law: u(t) x(1), IS an i mteedback Laain matrix

Controllability: Any initial state x(0) can be steered to any final state x! at a finite time t;
based on the inputs from the feedback law.

For a robot: All configurations can be achieved in finite time

from a given initial configuration.

Note: The trajectory between 0 and t; is not specified

For linear dynamical systems For non-linear dynamical systems, general

f(x(1), u(t)) = Ax(t) + Bu(t) controllability criteria are not availablel!

algebraic criteria for controllability are available: Local (in space and time) notions of

5 ) controllability are employed
C=[BABA°B --- A77*B], rank(C) = n (C has full rank)



STABILITY OF A DYNAMICAL SYSTEM

Equilibrium: A state x° of is said to be an equilibrium state if and only if
x¢ =x(t; x¢, u(t)=0) for all t 2 0.

If a trajectory reaches an equilibrium state and if no input is applied

the trajectory will stay at the equilibrium state forever (internal system'’s

dynamics doesn’'t move the system away from the equilibrium point)
For a linear system the zero state is a always an equilibrium state
Stable equilibrium: An equilibrium state x¢is said to be stable if and only
if for any positive €, there exists a positive number 8(g) such that the inequality
1x(0) — x[|= 8
implies that ||x(t; x(0), u(t)=0) — x* || < € for all t 2 0.

An equilibrium state x¢ is stable if the response following after starting at any initial

state x(0) that is sufficiently near to x¢ will not move the state far away from x°.

Asymptotically stable equilibrium:




ILLUSTRATION OF STABILITY TYPES
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CONTROLLABILITY VS. STABILIZABILITY

Stabilizability: The problem of finding a feedback control law so as to make a closed-loop
equilibrium point x®or admissible trajectory x%(t) asymptotically stable.

Stabilizability is very important in practice to be able to cope with real-world disturbances
A

u(t) = K(x(t)-x(1))

—+ V

/ Stabilizability of Linear dynamic systems: \

Controllability implies asymptotic (actually, exponential) stabilizability by a smooth
state feedback law. In fact, the controllability condition implies that there exist
choices of the constant gain matrix K such that the linear P control

u(t) = K(x(t)-x(t))
\_ makes x%(t) asymptotically stable Y,

Linear systems: Non-Linear systems:
Controllability = Stabilizability Controllability ? Stabilizability 6



LINEAR DYNAMIC SYSTEMS

Given a linear dynamic system in the form of a homogeneous system of ODEs:
x(t) = Ax(t)

e \Where will the system state go? = Solve the system to find the time-dependent
function x(t) for the evolution of the state variables.

g . X1 ()] B 4 8] [x(t)
_%_ _Xg(t)_ _10 2_ _Xz(t)_

The solution function for the state variables is the following, with c1 and c2

integration constants depending on the initial point x(0):

_Xl(t)_ C1 elzt + C24€'_6t _]__ . ) 4 i o
= _ = C e "+ C e
_Xz(t)_ CleIQt . C25e ot 1 -1- 2 -_5-
% h
A’s eigenvalues A\ =12, A\, = —0 = | ry = . A’s eigenvectors

In the general case of a system with n state variables (equations)

( X(t) = clrlexlt + C2r26>\2t + ... cnrnex”t ) .




LINEAR DYNAMIC SYSTEMS

e \Where are the equilibrium points? Answering means to first find the fixed points
(the attractors, in general) that correspond to setting to zero the rate of variability

of the state variables. In the example, the fixed points are the solutions of:

0 _4 8- Xl(t)
0 _10 2_ Xg(t)

e What will the system do in correspondence of the fixed points? Is the system
(asymptotically) stable? If we place the system close to a fixed point, or, similarly, we
disturb a system at a fixed point, will the system go back to the fixed point, or will it
diverge from it? What about the behavior at any other point?

4 A
For a linear system, a stability analysis for the fixed points can be performed through the

calculation of the eigenvalues of the matrix of the coefficients.
. y

The eigenvalues are the solution of the characteristic equation det(A - Al) = 0, and

determine the time evolution of the system along the principal directions of the eigenvectors



RECAP ON EIGENVALUES AND EIGENVECTORS

a1 R | r s
' | ren= 7 5[]
3+ 3+
AX = AX /\ Y /‘_\
i Y 1
- D 21 24
y ‘ "7<i><\ A /’/’ 1
X X - X' H
; \ ( Fy B! x
= D e 2 1 1 2 3 4 4 3 2 1 1 2
c' 1 1
2 2
) X AX X B 3
4+ 4
Elementary Matrices for Linear Transformations in R? Symmetric matrix:
Reflection in y-Axis Reflection in x-Axis eigenvectors forms an orthogonal basis
A = -1 0 A= 1 0 . . o ) y
Lo 1 “lo -1 | " ren=| 3 S5 4
3+ /’\ 34
Reflection in Line y = x ‘
0 1 - - . 0o 2 2+ 2+
A= [1 0] 7 - H
Horizontal Expansion (k > 1) Vertical Expansion (k > 1) 2 -l 12 3 4 4 3 T 3
or Contraction (0 < k < 1) or Contraction (0 < k < 1) N
A= [k O] A= [l O] ; (1] - . . 1
O 1 0 k Flﬁ,,\f:“ ot g e ﬂ Uﬂ"‘;}j Z?":'/“If: i v M 5l 3
Horizontal Shear Vertical Shear - = At .
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(LINEAR) STABILITY BEHAVIOR VS. EIGENVALUES

State behavior in the vicinity of a fixed point in relation to its stability based on

the eigenvalues (the value of y axis quantifies the distance from the fixed point)

Eigenvalues

Allreal and negative

Graph

Allreal and one or more
are positive

Allreal eigenvalues are
negative and there are
imaginary parts

Eigenvalue Type | Stability | Oscillatory Behavior | Notation

All Real and + Unstable | None Unstable Node

All Real and - Stable None Stable Node

Mixed + & - Real | Unstable | None Unstable saddle point
+a + bi Unstable | Undamped Unstable spiral

-a + bi Stable Damped Stable spriral

0+ bi Unstable | Undamped Circle

Repeated values

Depends on orthogonality of eigenvectors

One or more eigenvlaues
have a positive real part
and there are imaginary
parts

Real parts of the
eigenvlaues are zero and
there are imaginarv parts

Negatiwve
real pat=
stable

Complex
eigenvalues

Two real
negative
roots =
stable
node

Positive

unstable
spiral

real part=

i

Two real

unstable

node

Real roots of opp.sign= unstable saddle node

positive
rook =
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NON-LINEAR DYNAMICAL SYSTEMS?

~ : : : : : ; )
A non-linear system can be linearized around a (fixed) point, and studied with

the same methods. The effectiveness of the linearization decreases with the distance
from the fixed point itself and with the stability characteristics of the point .
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Nonlinear Function

®  Operating Point

Linearization

Region of Good Approximation

Hartman-Grobman theorem: In a hyperbolic

equilibrium point where all eigenvalues have non-

y?

/

zero real parts, the flows of the linearized and

nonlinear equilibrium is the same as the stability of

\

Hyperbolic point (near the point

the equilibrium of the linearized system.

/ .
\X1 nonlinear system are (topologically) equivalent near
the equilibrium. In particular, the stability of the
(

trajectories resemble hyperbolas) Saddle point 11



.... OUR LINEAR FEEDBACK CONTROL LAWS?

This is what we have derived:
v(t) = Kop(2)
v(t) = Keal(t) + KgB(t)

o —cos(a) 0
/ I sin@ v
a| = -1
o
. . W
B8 ~sin(a) 0|
_ P _
o —Kppcos(a) 7?7 Asymptotically stable as long as:
al|l = _KpSin(a)_Kaa_Kﬁﬁ Ko>0, Kg<0 Kyq—K,>0

6l | —K,sin(a) | J
It's NOT linear in the state [,o(t) a(t) ,5(t)} -

12



LINEARIZATION OF THE CONTROL LAW

p —Kpp cos(@) In a small neighborhood of [0 0 0]:
a|l = | —Kpsin(a) — Kqea — KgB cos(x) = 1, sin(x) = x
_5_ I —K,sin(a) ]
(o] [-K, 0 0 1 [
al =] 0 —(Ke—-K)) —-Ksl| |a
¢l 0 —K, 0 | |B]
N A /

The characteristic polynomial of the coefficient (gain) matrix A is

(A + K,) (A* + A(Kq — K,) — K,Kg)  all roots have negative real part (i.e., stability) if
Ko>0, Kg<0, Kyq—K;,>0

For robust pose control, the following strong stability conditions ensures that the

robot does not change direction approaching the goal, implying that conditions on «
T T
. 5 If a(0) € Iy = (— un —} — a(t) e If Vit
K,>0, Kg<0 Kyq+=-Kg——=K,>0 22

ST fa(0) e l,=Tr= a(t)e ¥t 13



FUNCTION LINEARIZATION

» Linearization requires first-order differenziability. For a scalar function f(x) of one variable,
the Taylor series of the 1st order in a point xp:

f(x) = f(xo0) + f'(x0)(x — x0) + o(x — xp)

Is the same as the equation of the tangent line in xp (up to an error of the second order),
that is, the derivative defines the linear approximation of the function.

» For a scalar function of multiple variables, the gradient vector Vf(x) generalizes the notion
of derivatives for all variables, and linearization is performed using the same Taylor's series
but using the gradient instead of the derivative.

» For a vector function g(x) : R” + RP, the relation still holds, but the gradient vector is
substituted by the Jacobian matrix:

991 991 991 091 9% Ogp
Ox; Oxp ~°° ax,,\ Ox; Ox1 77 0Oxp
%Iz g_gz g_gz dg1 9090 89p
- T __ X1 Xp 77 Ox T - Bx> Ox» """ Ox
J(x) =[Vagi(x) ... Vgp(x)] = 1. J (x) = 2 2 2
dg9p 9gp ogp / 991 0% 99p
Ox1 Oxp "7 Oxp Oxn Oxn ~°° Oxp

» A dynamic system of p equations in n state variables can be precisely seen as a vector
function, with the Jacobian showing how every variable changes with the variation of another
variable derivatives

» The general approach for the linearization of a dynamic system passes through the writing of
the Jacobian matrix at the fixed point of interest Xy, and use of the resulting Jacobian to

write the Taylor's series of the first order that linearly approximates the system in xg 317 14



