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T O  B E  D O N E  …

Stability properties of linear systems 
Linearization of previous control systems 
Stability domain for feedback-based gains 

Other types of controllers?
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CONTROLLABILITY OF A DYNAMICAL SYSTEM

Controllability: Any initial state x(0) can be steered to any final state x1 at a finite time t1  

based on the inputs from the feedback law.  
For a robot: All configurations can be achieved in finite time  

from a given initial configuration. 
Note:The trajectory between 0 and t1 is not specified

For linear dynamical systems For non-linear dynamical systems, general 
controllability criteria are not available!

ẋ = f
�
x(t),u(t)

�
, x 2 Rn, u 2 Rm

Time-invariant dynamical system with m control inputs u 

Control inputs are defined  
according to a feedback law: 

f
�
x(t),u(t)

�
= Ax(t) + Bu(t)

Local (in space and time) notions of 
controllability are employed

C = [ B AB A2B · · · An�1B ], rank(C) = n (C has full rank)

algebraic criteria for controllability are available:

u(t) = Kx(t), K is an n ⇥m feedback Gain matrix
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STABILITY OF A DYNAMICAL SYSTEM

Equilibrium: A state xe of  is said to be an equilibrium state if and only if  
xe =x(t; xe, u(t)=0) for all t ≥ 0.  

If a trajectory reaches an equilibrium state and if no input is applied  
the trajectory will stay at the equilibrium state forever (internal system’s 
dynamics doesn’t move the system away from the equilibrium point) 

For a linear system the zero state is a always an equilibrium state

Stable equilibrium: An equilibrium state xe is said to be stable if and only 

if for any positive ε, there exists a positive number δ(ε) such that the inequality  
||x(0) − xe ||≤ δ 

implies that ||x(t; x(0), u(t)=0) − xe || ≤ ε for all t ≥ 0. 
An equilibrium state xe is stable if the response following after starting at any initial 
state x(0) that is sufficiently near to xe will not move the state far away from xe.

Lyapunov stability

Asymptotically stable equilibrium: If the equilibrium xe is  Lyapunov-stable  
and if every motion starting sufficiently near to xe  converges (go back) to xe as t → ∞.
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I L L U S T R AT I O N  O F  S TA B I L I T Y  T Y P E S

Equilibrium

xe

t

u(t) = 0
u(t) ≷ 0

Stable equilibrium 
Lyapunov 

xe

t

u(t) = 0

δ(ε)ε

Asymptotically Stable 
Lyapunov equilibrium

xe

t

u(t) = 0

δ(ε)

t

u(t) = 0
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CONTROLLABILITY VS. STABILIZABILITY

Linear systems: 
Controllability ➔ Stabilizability

Stabilizability: The problem of finding a feedback control law so as to make a closed-loop 
equilibrium point xe

 or admissible trajectory xe(t) asymptotically stable. 

Non-Linear systems: 
Controllability ? Stabilizability

Stabilizability is very important in practice to be able to cope with real-world disturbances 

Stabilizability of Linear dynamic systems:  
Controllability implies asymptotic (actually, exponential) stabilizability by a smooth 

state feedback law. In fact, the controllability condition implies  that there exist 
choices of the constant gain matrix K such that the linear P control 

u(t) = K(xe(t)-x(t)) 
makes xe(t) asymptotically stable

xe

t

δ(ε)

u(t) = K(xe(t)-x(t)) 
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LINEAR DYNAMIC SYSTEMS

Given a linear dynamic system in the form of a homogeneous system of ODEs:

• Where will the system state go? ➔ Solve the system to find the time-dependent 
function x(t) for the evolution of the state variables.  

"
dx1

dt

dx2

dt

#

= A

"
x1(t)

x2(t)

#

=

"
4 8

10 2

#"
x1(t)

x2(t)

#

The solution function for the state variables is the following, with c1 and c2 
integration constants depending on the initial point x(0): 

"
x1(t)

x2(t)

#

=

2

4
c1e

12t + c24e�6t

c1e
12t � c25e�6t

3

5 = c1

"
1

1

#

e

12t + c2

"
4

�5

#

e

�6t

�1 = 12, �2 = �6 and r1 =

"
1

1

#

, r2 =

"
4

�5

#

A’s eigenvalues A’s eigenvectors

In the general case of a system with n state variables (equations)

x(t) = c1r1e
�1t + c2r2e

�2t + . . . cnrne
�nt

ẋ(t) = Ax(t) + C
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LINEAR DYNAMIC SYSTEMS

• Where are the equilibrium points? Answering means to first find the fixed points 
(the attractors, in general) that correspond to setting to zero the rate of variability 
of the state variables. In the example, the fixed points are the solutions of: 

"
0

0

#

=

"
4 8

10 2

#"
x1(t)

x2(t)

#

For a linear system, a stability analysis for the fixed points can be performed through the 
calculation of the eigenvalues of the matrix of the coefficients.

The eigenvalues  are the solution of the characteristic equation det(A - λI) = 0, and 
determine the time evolution of the system along the principal directions of the eigenvectors

• What will the system do in correspondence of the fixed points? Is the system 
(asymptotically) stable? If we place the system close to a fixed point, or, similarly, we 
disturb a system at a fixed point, will the system go back to the fixed point, or will it 
diverge from it? What about the behavior at any other point?
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R E C A P  O N  E I G E N VA L U E S  A N D  E I G E N V E C T O R S

Symmetric matrix: 
eigenvectors forms an orthogonal basis



10

(LINEAR) STABILITY BEHAVIOR VS. EIGENVALUES
State behavior in the vicinity of a fixed point in relation to its stability based on 
the eigenvalues (the value of y axis quantifies the distance from the fixed point) 
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NON-LINEAR DYNAMICAL SYSTEMS?

A non-linear system can be linearized around a (fixed) point, and studied with 
the same methods. The effectiveness of the linearization decreases with the distance 

from the fixed point itself and with the stability characteristics of the point .

Hyperbolic point (near the point 
trajectories resemble hyperbolas) Saddle point

Hartman-Grobman theorem: In a hyperbolic 
equilibrium point where all eigenvalues have non-
zero real parts, the flows of the linearized and 
nonlinear system are (topologically) equivalent near 
the equilibrium. In particular, the stability of the 
nonlinear equilibrium is the same as the stability of 
the equilibrium of the linearized system.
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…. OUR LINEAR FEEDBACK CONTROL LAWS?

It’s NOT linear in the state 
⇥
⇢(t) ↵(t) �(t)

⇤

Linearization  
around the fixed point [0 0 0]

v(t) = K⇢⇢(t)

�(t) = K↵↵(t) +K��(t)

2

664

⇢̇

↵̇

˙�

3

775 =

2

666664

� cos(↵) 0

sin(↵)

⇢
�1

�
sin(↵)

⇢
0

3

777775

"
v

!

#

K⇢ > 0, K� < 0, K↵ �K⇢ > 0
?? Asymptotically stable as long as:

This is what we have derived:

2

664

⇢̇

↵̇

˙�

3

775 =

2

664

�K⇢⇢ cos(↵)

�K⇢ sin(↵)�K↵↵�K��

�K⇢sin(↵)

3

775
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LINEARIZATION OF THE CONTROL LAW

In a small neighborhood of [0 0 0]: 
cos(x) = 1, sin(x) = x 

2

664

⇢̇

↵̇

˙�

3

775 =

2

664

�K⇢⇢ cos(↵)

�K⇢ sin(↵)�K↵↵�K��

�K⇢sin(↵)

3

775

The characteristic polynomial of the coefficient (gain) matrix A is
�
�+K⇢

��
�2 + �(K↵ �K⇢)�K⇢K�

�
all roots have negative real part (i.e., stability) if

K⇢ > 0, K� < 0, K↵ �K⇢ > 0

For robust pose control, the following strong stability conditions ensures that the 
robot does not change direction approaching the goal, implying that conditions on 𝛼 

If ↵(0) 2 If =
⇣
�
⇡

2
,
⇡

2

i
) ↵(t) 2 If 8t

If ↵(0) 2 Ib = Īf ) ↵(t) 2 Ib 8t
K⇢ > 0, K� < 0, K↵ +

5

3
K� �

2

⇡
K⇢ > 0

Linearization  
around the fixed point [0 0 0]

2

664

⇢̇

↵̇

�̇

3

775 =

2

664

�K⇢ 0 0

0 �(K↵ �K⇢) �K�
0 �K⇢ 0

3

775

2

664

⇢

↵

�

3

775

A
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FUNCTION LINEARIZATION


