LECTURE 12:
FEEDBACK-BASED CONTROL |V

INSTRUCTOR:
GIANNI A. DI CARO

BACK TO NON HOLONOMIC CONSTRAINTS

m Each wheel introduces in the system a non-holonomic constraint
since it does not allow normal translations to the rolling direction.
m [he wheel constraints the instant robot mobility, without typically

reducing the configuration space (eg: parking parallel).
e

Without constraints:

X = vtc050+v,,cos(9+g)
y = vtsin0+v,,sin(0+72—r)

Since there is no slipping in normal direction v,, =0 :
o tanezx o xsmH—ycosQ:O]

X = v,cosb
y Ve sin 6 X Mobility contraint

PFAFFIAN FORM OF CONSTRAINTS

m Constraint vector equation: a(g)g = 0 (1 wheel).
m Constraints matrix equation: A(g)g = 0 (N wheels).

m A constraint that can be written as A(q)g = 0 is said Pfaffian
Constraint

Non-holonomic Contraint Allowable speeds

They may be generated by a matrix
G(q) such that:

m It cannot be fully integrated

m It cannot be written in the

configuration space
g bat Im(G(q)) = Ker(A(q)), VqeC
m They do not restrict the space of N config.
configurations but the instant robot C =R space
mobility.

General formulation

g = G(q)v

m It represents the allowable directions of motion in the configuration
space (allowable velocities)

m It binds speeds in the operational space with speeds in the 3
configuration space

INTEGRABILITY CONDITIONS

Integrability condition

Given the kinematic contraint in Pfaffian Form:

a'(q)g=>_;_, ai(a)g =0

In order for it to be holonomic there must be a scalar function h(q) and
an integration factor (q) # 0 such that:

v(a)aj(q) =

O(vax) _ A(vaj) jk=1,..n j+#k (1)

PFAFFIAN CONSTRAINTS FOR THE UNICYCLE

X Y»
m The configuration is described by g = | y |
0 i
m Constraint: xsinff — ycosf =0 i ~” d"‘\le
u Pfaffian Form: A(q)g=0 with: Yri=== (1Y
{ A(q) = [sinf,—cosb,0] E Rl
T | I
q = [Xa.Ya 9] e X

cosf 0
Ker(A(q)) = span (sinfd |,| O) = Im(G(q))
0 1

UNICYCLE KINEMATIC MODEL

Unicycle Kinematic Model

cosf 0 cosf 0 .
g=| sinf |v+ | 0 |w=| sinf O [:}] y
B O | i 1 B I 0 1 1 /’/ 5

m v: the linear velocity of the contact point between the wheel and the
ground and is equal to the product between angular velocity of the
wheel around its horizontal axis and the radius of the wheel

m w: angular velocity of the robot, equals to the angular velocity of
the wheel around the vertical axis

Control inputs

By acting on v and w it is possible to modify the robot configuration

PLANNING (A PATH, A TRAJECTORY)

It's an inverse kinematic problem + Require motion control

Planning for a WMR

m Problem: determining a trajectory in the configuration space to take
the robot from a certain initial configuration to a final configuration,
both feasible

m The initial and final configurations (boundary conditions) and any
point of the trajectory must be compatible with the kinematic

constraints of the robot

A trajectory is not feasible if it requires the robot to perform motion
iIncompatible with its kinematic constraints.

Example: unicycle can not have lateral

p
(Q(O\ translational trajectories.

7

PLANNING: SPACE-TIME COMPONENTS

Space-time separation of the trajectory

m We want to plan a trajectory q(t) for t belongs to [t;, t¢] that take
the robot from an initial configuration q(t;) = g; to a final
configuration q(tf) = gr

m We assume no obstacles

The trajectory q(t) can be decomposed in:

d
m a path g(s), with Z(SS) #0,Vs
m a motion law s = s(t), with 5; < s < s,
: S(t,') = 5
th
W { S(tf) = Sf

s monotonic, i.e. $(t) >0
m [ypical choice for s is the curvilinear
S5 = 0
S = L

abscissa along the path: {

FEASIBILITY OF A PATH

e
. d dq . .
Space-time separation of the trajectory g = d—j — d—Zs =q’'s
m g’ has the direction of the tangent to the path in the configurations
space oriented for growing s

m S is a scalar which modulates the intensity

Form the Pfaffian form of the nonholonomic constraints we get the
feasability condition of the geometric path:

{ A(@)g = A(q)q'$=0
S > 0, Vt € [t;, tf]
Y
A(q)q’

-
A feasable path is given by: ¢’ = G(q)i

FROM GEOMETRIC TO VELOCITY INPUTS

m Geometric inputs U: determine the geometry path
m Chosen i feasable, we define the motion law s(t) to define how fast
the robot run across the path

How to combine the geometric path with known inputs & and the motion
law in order to obtain the control inputs for the robot?

q' = G(q)i(s)

d Y
d—zé = G(q)i(s)s
Y
{c‘z = G(q)i(s)s
g = G(q)u(t)

Y
i(s)s = u(t)

10

FEASIBLE GEOMETRIC PATH FOR UNICYCLE

Example: unicycle

For the unicycle, the wheel's nonholonomic constraints imply the
following feasibility condition for the geometric path:

[sin@, —cos6,0]q" = x'sinf — y'cosf =0

m The condition highlights the fact that the Cartesian speed must be
oriented along the direction of motion (no lateral slip)
m [he feasible paths for the unicycle are given by:

x' v cos 6

y' = Vsinf
6’ w

m The kinematic inputs are obtained from the geometric ones:

{v(t) = Vs

w(t) = s

11

PATH PLANNING EXPLOITING

DIFFERENTIAL FLATNESS

A generic nonlinear dynamic system:
x = f(x) + g(x)u

has the property of differential flatness if there exists a set of outputs y,
called flat, such that the system’s state x and input v can be expressed
algebraically as a function of y and a number of its derivatives

X
u

x(y,y.7.¥,""y(r))
u(y,y,¥,-..,y")

e Assigning a trajectory for a dynamic system equals to assign its outputs, in space and/or

time. In particular, for a mobile robot, an output is a pose in the environment, while a
trajectory is a sequence of poses, possibly specified through a time parameter.

e Therefore, in the case of differential flatness, once an output trajectory is assigned in terms
of some variable y, the associated trajectory of the state x and history of control inputs u
are uniquely determined. 12

DIFFERENTIAL FLATNESS FOR UNICYCLE

For the unicycle/differential and bicycle cases the Cartesian coordinates of the robot
reference point are flat outputs. This can be established both for trajectory following
(depending on s) and trajectory tracking (depending on t).

In the case of trajectory tracking, a Cartesian trajectory is provided as outputs to be followed
in time: (x4(t), yq(t)).

The associated state trajectory is: qq4(t) = [xy(t) ya(t) Gd(t)]T, where the orientation is
04(t) = atan2(yq(t), xq4(t)) + km

The kinematic inputs (the controls given to the wheels) that drive the robot along the
Cartesian trajectory are obtained from the kinematic equations:

va(t) = £4/%3(t) + y3(t)

()i () =% ()yg(D)
wa(t) = "85

It is apparent that both state and control inputs are functions of the outputs and of their
derivatives, up to order r = 2

13

DIFFERENTIAL FLATNESS FOR UNICYCLE

For the unicycle (and bicycle) models, the Cartesian coordinates of the
robot’s reference point are flat outputs,
both for path (depending on s) and trajectory following (depending on t)

e |n case of path following, a path is provided as a set of points to be followed
In space:
(x(s),¥(s)), se[01]

e The associate state path in configuration space:

q(s) = [x(s),y(s).6(s)]", s€[0,1]

e The orientation of the robot is derived using the flat outputs based on the
constraint equations (that guarantee the kinematic feasibility)

6(s) = atan2(y(s), x(s)) + km k = 0 forward motion, k = 1 backward motion

14

DIFFERENTIAL FLATNESS FOR UNICYCLE

The kinematic inputs (velocity controls to wheels) that would move the robot along

the path (x(s), y(s)) are also obtained from kinematic equations using flat outputs:
V(s) = =£/X(s5)?+ y'(s)?

y"(s)x'(s) — x"(s)y'(s)
x'(s)* + y'(s)?
Once defined the desired speed profile, we obtain:
{ v(t) v(s)s(t)
w(t) w(s)s(t)

Where the sign of s(t) depends on the direction of travel chosen

@(s)

m The flat outputs are used to solve planning problems

m |t is possible to use any interpolation scheme to plan the evolution
of these outputs (respecting the boundary conditions)

m The evolution of other associated variables and kinematic inputs can
be calculated algebraically from y/(s)

m [he path will automatically satisfy the nonholonomic constraints -

DIFFERENTIAL FLATNESS PLANNING

Problem: unicycle

Plan the trajectory to take the robot from an initial configuration
q; = [x;, yi,0;] to a final configuration qr = [x¢, yr, O¢]

Since x, y are flat outputs, they can be used to plan the trajectory

m | suppose to parameterize the curve with a parameter s = [0, 1]
m Let's use a cubic polynomial.

x(s) = $3x —(s—13x + a,s%(s — 1) + Bys(s — 1)?
y(s) = Syr—(s—1)yi+ays’(s — 1)+ Bys(s — 1)
that automatically satisfy the boundary conditions on x, y
x(0) = x x(1) = xf

y(0) = vy y(1) = yr

16

DIFFERENTIAL FLATNESS PLANNING

Since the orientation depends on each point on the values of x’, y’/, also
the boundary conditions on must be met:

x'(0)
y'(0)

k; cos 0; x'(1)
k,' sin 0,‘ y'(l)

ks cos O¢
kf Sin 9f

m ki >0 e kr > 0 are free parameters of the same sign
m [hey represent the initial and final geometric speed

m They influence the type of path obtained

m They are used to compute the values ay, ay, B«, B,. Let's choose
ki = kr = k

ax | | kcoslOf — 3xf Bx | | kcosO; + 3x;
Qy, - k sin Of — 3yf ,By - k sin 9,’ + 3y,-

17

DIFFERENTIAL FLATNESS PLANNING

B 0 2 4 o E 10
E -25} time
_3>- 4r
-35 | 2+
Al % s A
..2»
-5 b
- _4 A . . J
0 2 - 6 8 10
time

qi
qr

0,0, 0]
[0, —5, 0] k=10, k=20, k=30

18

DIFFERENTIAL FLATNESS PLANNING

1 \
N M /
0 A ' A
v} 2 o 6 8 10
nme
i15r
'
/
w0t o
Al
St 11
p o\
OF = T M i — i ——— - -
-5 1
2 K 6 8 10
nme

E
5
-10 athe e e ob
5 0 5 10 1
(m)
-A '
0 2 < 6 8 10
time
- -
A
0 2 4 6 8 10
time

rad/sec

-10

0 2 6 8 10
tme
LS
-1
\ |
\ J
-2F (|
!
-3F .{
0 2 6 3 10
tme

TRAJECTORY TRACKING

For the trajectory tracking problem be feasible, the trajectory (x4(t), y4(t)) must be defined
to be compliant with the holonomic and non-holonomic constraints of the robot

Let's focus on a unicycle / differential drive — the trajectory must be of the following form,
for some specified inputs for vy and wy, to be admissible:

Xg = Vg4 Cos(64)

Yd = Vg sin(6q)

g = wy
Based the property of differential flatness, these equations can be solved for 6, and for the
reference inputs:

64(t) = atan2(yy(t), x4(t)) + km (k = 0 for forward motion,
k = 1 for backward motion)

va(t) = £4/53(t) + 73 (2)
Va(t)xq(t)—x4(t)yq(t)
wa(t) e
A feedback-based controller, closed-loop, is needed: using an open-loop approach based on
the above equations would not provide satisfactory results in practice.

The feedback signal can be an error measure e based on the difference between the desired
and the current state: e(t) = q4(t) — q(t), g4(t) = [xq(t) ya(t) Bd(t)]T.

q(t) = [x(t) y(t) 6()]"

20

USE OF DIFFERENTIAL FLATNESS

» In the case of trajectory tracking, a Cartesian trajectory is provided as outputs to be followed
in time: (xg(t), yq(t)).

» The associated state trajectory is: qq(t) = [xd(t) yq(t) Gd(t)]T, where the orientation is
64(t) = atan2(yq4(t), xq(t)) + kn

» The kinematic inputs (the controls given to the wheels) that drive the robot along the
Cartesian trajectory are obtained from the kinematic equations:

va(t) = £4/x5(t) + y5(t)

wd(t) — Vd StZXgSt)—x%(t)Zd (t)

x5(t)+yg(t)

It is apparent that both state and control inputs are functions of the outputs and of their
derivatives, up to order r = 2

21

MOTION CONTROL FOR TRAJECTORY TRACKING

Error representation

» The tracking error vector e is conveniently expressed in terms of its projections on the
rotated reference frame of the robot wrt to the inertial frame. In this way the positional part
of the error is the Cartesian component of the error expressed in a reference frame aligned

with the current orientation of the robot:

e, | [cos(6) sin(6) O] [xy—x| [(xg— x)cos(8) + (yg — y)sin(6)
e= |e| = |=sin(6) cos(8) Of |y, —y| = | —(xg — x)sin(8) + (4 — y) cos(6)
es 0 0 1f [6a—6] | 6y — 6)

22

ERROR DYNAMICS

» Differentiating wrt time and using kinematic equations for expressing
x(t), y(t),6(t), xq(t), yq(t),04(t), the error dynamics becomes:
é; = vycos(e3) — v+ ew
é = vgsin(es) — ew
€3 =Wy — W
» The following (invertible) input transformation (where u; and u> are be the actual input
control signals) is aimed at setting robot’s velocities bringing to zero the error:

v = vgcos(es3) — g

Ww=wWwWyg— uw
» Resulting tracking-error dynamics:

0 wy 0 0 1 — €9 ™
1
e=|—wyg 0 Oje + (sin(ez)] vy + |0 € y
2
! 0 0 0_ ! 0] _0 1 |t -

» Non-linear, time-varying dynamics: The first term is linear (in e), the second is not linear
because of sin(e3), and the third is not linear because of the multiplication between variables
u and e. The first and the second term are, in general, time-varying because of the presence
of the reference inputs v4(t) and wy(t). 23

LINEARIZATION

» Approximate linearization of the error dynamics e around the reference trajectory, around
which e &~ 0. The linearization sets sin(e3) = e3, and the input signals u; and wy are
evaluated on the trajectory (such that the coefficients of their components vanish):

0 wy O 1 0| ¢ -
u
e=|-wy 0 vyle + (00
uz
0 0 0 01| L -

» The linear feedback is set as follows (it reduces linear and angular velocities proportionally to
the value of the corresponding error components):

U = —Kki €

U = —koer — kzes

» The resulting closed-loop linearized dynamics:

_— —

—K1 Wy 0
e=|—-wy 0 vy |e=A(t)e
| 0 —ko —k3 24

STABILITY

. logei
letting , ,
(l o W'(I

A'l — A';; — QC(I A'g =
Ud
with a > 0, ¢ € (0,1), the characteristic polynomial

of A(t) becomes time-invariant
p(A\) = (A + 2Ca)(N* + 2Ca\ + a*)

real pair of complex
negative eigenvalues with
eigenvalue negative real part

e caveat: this does not guarantee asymptotic stability,
unless v4 and wy are constant (as on circles and lines);
even in this case, asymptotic stability of the unicycle is

not global (indirect Lyapunov method) .

NON-LINEAR IS STABLE

e the actual velocity inputs v, w are obtained plugging
the feedbacks w1, u2 in the input transformation

e note:(v, w) — (vd, wa) as e — 0 (pure feedforward)

e note: ko — o0 as vqg — 0, hence this controller can
only be used with persistent cartesian trajectories
(stops are not allowed)

e global stability is guaranteed by a nonlinear version
uyp = _kl(l’(l-w'(l) €]

Sin (9]
€2 — A’:{("d.w‘d) €3

Uy = —ko vy
€3

if £1, k3 bounded, positive, with bounded derivatives

Extensive mathematical details can be found in the reference book: Robotics: Modelling,
Planning and Control, Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G., Springer Series in
Advanced Textbooks in Control and Signal Processing, pp. 632, 2009. 26

