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KF FOR FILTERING MEASUREMENTS FROM ONE SENSOR 
KF FOR FILTERING THE MEASUREMENT VALUES OF ONE SENSOR

Scenario: The robot does not move, a stream of measures z
K

about some quantity ⇠ of
interest is obtained from one if its sensors. The goal is to filter the data stream in order to
produce at each time step k the best estimate for the quantity ⇠ (Filtering problem)

The state-observation equations: the state vector ⇠ corresponds to the measured quantity of
interest. It does not change over time (no system motion) apart from small deviations (e.g.,
because of temperature or robot’s vibrations). No controls are issued. For simplicity, we
assume that the observation model directly maps the measures into the state vector (i.e., C
is the identity matrix and can be therefore removed from the equations). Observations are
corrupted by a white Gaussian noise. The resulting system equations are:

⇠
k+1

= ⇠
k

+ ⌫
k

z
k+1

= ⇠
k

+ w
k

The KF equations:

At every time step k:

ˆ⇠
k+1|k = ˆ⇠k

P
k+1|k = Pk + Vk

At every time step k + 1 when an observation z
k+1

is available:

ˆ⇠
k+1

=

ˆ⇠
k+1|k + Gk+1(zk+1 � ˆ⇠k+1|k)

P
k+1

= P
k+1|k � Gk+1Pk+1|k

G
k+1

= P
k+1|k(Pk+1|k +Wk+1)
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RANGE FINDER EXAMPLE

The robot is not moving and the environment is assumed to be stationary ! the true

distance, or the range and bearing do not change during the measurement process, apart
from maybe environment vibrations, v

k

(small white noise)

The measures from the sensor are affected by Gaussian white noise w
k

Proximity sensor - In case of a simple proximity sensor, the sensor only reports the measured
distance d from the closest obstacle, and the state variable has only one component.

Range finder - If a more powerful sensor is available (e.g., a camera), the sensor can measure
both the range ⇢ and bearing angle � of the closest obstacle wrt to the robot. The state
variable has two components, which are the same variables measured by the sensor.
The observation vector is therefore the following, where the C matrix is the identity matrix I:

z
k+1

=

⇥
⇢

k+1

�

k+1

⇤
T

= ⇠
k

+ w
k

,
2

RANGE FINDER EXAMPLE
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VALUES OF THE MODEL MATRICES FOR A DISTANCE SENSORTHE VALUE OF THE MATRICES OF THE KALMAN EQUATIONS

The state transition Matrix A: is the transformation factor to obtain the new state from the
last state, ⇠

k+1

= A⇠
k

, but since there is no change dynamics in the system, A =
⇥
1

⇤

The control matrix B: defines how the control inputs affect state changes,
⇠
k+1

= A⇠
k

+ Bu
k

, however in this case no control actions are executed, therefore B =
⇥
0

⇤

The observation matrix C: multiplies a state vector to translate it to a measurement vector,
z
k

= C⇠
k

but since in this case the measurement d is obtained directly, C =
⇥
1

⇤

The process covariance matrix V : defines how spread state uncertainty is,
⇠
k+1

= A⇠
k

+ Bu
k

+ ⌫
k

. To set it to a reasonable value, some assumptions/knowledge
regarding the stability of the distance being measured is needed. In this case, since nothing is
moving it’s safe to use a small value, such as: V =

⇥
1·10�5

⇤

The measurement covariance matrix W : is related to how reliable and stable the sensor is
making distance measures, z

k

= C⇠
k

+ w
k

. We can be conservative, using W =
⇥
1·10�1

⇤

Matrix ˆ⇠
0

is the initial prediction of the distance: This can be based on any a priori
knowledge. Let’s set it to ˆ⇠

0

=

⇥
3

⇤
m

Matrix P
0

is the initial prediction of the covariance on the distance estimate: Again, some a
priori knowledge would be necessary to set it to a good value. Let’s start with a value which
corresponds to about 30% of the initial prediction: P

0

=

⇥
1

⇤
m
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DISTANCE SENSOR: MATRIX VALUES
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FILTER’S EQUATIONS FOR SCALAR DISTANCE MEASUREMENTFILTER’S EQUATIONS FOR THE SCALAR MEASUREMENT OF DISTANCE

Blue = Inputs, Red = Outputs, Black = Constant Parameters, Gray = Working variables

State prediction ˆ

d

k+1|k = ˆdk
(Predict where the system state will be)

Covariance prediction P

k+1|k = Pk + 1·10�5
(Predict the amount of error in state prediction)

Innovation ⌫

k+1

= d

k+1

� ˆd
k+1|k

(Compare reality against prediction)

Innovation covariance ⌃

⌫

k+1

= P

k+1|k + 1·10�1
(Compare real error against prediction)

Kalman gain G

k+1

= P

k+1|k⌃
�1
⌫

k+1

(Rescale/weight the prediction)

State update ˆ

d

k+1

=

ˆ

d

k+1|k + Gk+1⌫k+1
(New estimate of the system state)

Covariance update P

k+1

= (1� G
k+1

)P

k+1|k
(New estimate of error)

4
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PERFORMANCE OF KF ON SCALAR DISTANCE MEASURES
EXAMPLE OF KALMAN PERFORMANCE ON SCALAR MEASUREMENT

5

Different random realizations of the same process and filter 



7

PERFORMANCE OF KF ON SCALAR DISTANCE MEASURES

Different parameters for the process and the filter 

0.02 0.10

0.03 0.02
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PERFORMANCE OF KF ON SCALAR DISTANCE MEASURES

Different parameters for the process and the filter 

0.15

0.02 0.98
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EQUATIONS’ ANALYSIS FOR THE SCALAR FILTERING PROBLEM

Scenario: The state, the measures, and the controls are 
all scalars. One scalar measure is obtained when an 
observation is available. For simplicity, all the linear 
coefficients are set to 1. If no controls are issued, the 
scenario is the same as in the case of the scalar filtering 
of a stream of measures (Scalar filtering problem) 

The state-observation equations:

⇠k+1 = ⇠k + uk + ⌫k

zk+1 = ⇠k + w k

The KF equations:

At every time step k :

b⇠k+1|k = b⇠k + uk
P k+1|k = P k + V k

At every time step k + 1 when an observation zk+1 is available:

b⇠k+1 = b⇠k+1|k + Gk+1(zk+1 � b⇠k+1|k)

P k+1 = P k+1|k � Gk+1P k+1|k
Gk+1 = P k+1|k(P k+1|k +W k+1)

�1

In scalar, one-dimensional notation, the equations become:

Prediction update

8
<

:

⇠ ⇠ + u

�2⇠  �2⇠ + �2⌫
Measurement correction

8
>>>>><

>>>>>:

G  
�2⇠

�2⇠ + �
2
w

⇠ ⇠ + G(z � ⇠)

�2⇠  (1� G)�2⇠
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EQUATIONS’ ANALYSIS FOR THE SCALAR FILTERING PROBLEM

Variance of the state estimate:

�2⇠ =
⇣
1�

�2⇠
�2⇠ + �

2
w

⌘
�2⇠ =

�2w�
2
⇠

�2⇠ + �
2
w

=)
1

�2⇠
 
1

�2⇠
+
1

�2w

⇠ (1� G)⇠ + Gz =

⇣
�

2
w

�

2
⇠ + �

2
w

⌘
⇠ +

⇣
�

2
⇠

�

2
⇠ + �

2
w

⌘
z

=

⇣
�

2
⇠�
2
w

�

2
⇠ + �

2
w

⌘⇣
⇠

�

2
⇠

+

z

�

2
w

⌘

⇠ 
⇣
1

�

2
⇠

+

1

�

2
w

⌘�1h
1

�

2
⇠

⇠ +

1

�

2
w

z

i

Weighted arithmetic mean,

w1x1 + w2x2

w1 + w2
,wi proportional to inverse of variance

(Mean) State estimate:

Prediction update

8
<

:

⇠ ⇠ + u

�2⇠  �2⇠ + �2⌫
Measurement correction

8
>>>>><

>>>>>:

G  
�2⇠

�2⇠ + �
2
w

⇠ ⇠ + G(z � ⇠)

�2⇠  (1� G)�2⇠
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EXAMPLE OF KF BELIEF EVOLUTION IN A SCALAR CASE
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EXAMPLE OF KF BELIEF EVOLUTION IN A SCALAR CASE

Motion
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EQUATIONS’ ANALYSIS FOR THE SCALAR FILTERING PROBLEM

•  ξ̂k+1|k  and zk+1 (i.e. ξ and z above before state update) are two normal distributed, 
independent RVs. ξ represents the current state prediction (out of the process model 
and past history), while z is the current state measure.  

• They can be also thought as two readings (x1, σ1) and (x2, σ2) from two independent 
instruments with different precision, or as two sequential independent readings made 
with different precision from the same instrument. All the readings are about the same 
quantity to be estimated, which is the true state of the system

In any chosen mental or practical representation, the question is how to 
combine the ξ and z readings/estimates (and their variances) into a new, 

single state estimation that best represents the information from ξ and z

x1

p1(x)

σ1

p2(x)

x2

σ2

x1

x2

σ2

σ1

p(x) = p1(x)p2(x)
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EQUATIONS’ ANALYSIS FOR THE SCALAR FILTERING PROBLEM

x1

p1(x)

σ1

p2(x)

x2

σ2

x1

x2

σ2

σ1

p(x) = p1(x)p2(x)

p(x) is the probability of a value x given the readings (or the estimates) x1 and x2. 

p(x) = Ce

�
1

2

�

2
1 + �

2
2

�

2
1�
2
2

"

x�

�
x1�

2
2 + x2�

2
1

�

�

2
1 + �

2
2

#2

The most probable result, that best 
represent the data in the ML sense, 
corresponds to the distribution center:

b
x =

�
x1�

2
2 + x2�

2
1

�

�

2
1 + �

2
2

With variance: 1b�2 =
�21 + �

2
2

�21�
2
2

�2⇠ =
⇣
1�

�2⇠
�2⇠ + �

2
w

⌘
�2⇠ =

�2w�
2
⇠

�2⇠ + �
2
w

=)
1

�2⇠
 
1

�2⇠
+
1

�2w

This is precisely the result of 
the new state estimate 
produced by the KF!

⇠ (1� G)⇠ + Gz =

⇣
�

2
w

�

2
⇠ + �

2
w

⌘
⇠ +

⇣
�

2
⇠

�

2
⇠ + �

2
w

⌘
z

=

⇣
�

2
⇠�
2
w

�

2
⇠ + �

2
w

⌘⇣
⇠

�

2
⇠

+

z

�

2
w

⌘

⇠ 
⇣
1

�

2
⇠

+

1

�

2
w

⌘�1h
1

�

2
⇠

⇠ +

1

�

2
w

z

i

Weighted arithmetic mean,

w1x1 + w2x2

w1 + w2
,wi proportional to inverse of variance

p(x) = N(x1,σ1)N(x2,σ2)
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E X A M P L E  F O R  R O B O T  L O C A L I Z AT I O N
EXAMPLE OF USE OF KALMAN FILTER FOR ROBOT LOCALIZATION

bel(x

0

) = N(x̂

0

,�

2

0

)

bel(x

1

) =

(
x̂

1|0 = Ax̂

0

+ Bu

1

�

2

1|0 = A
2

�

2

0

+ �

2

action

bel(x

1

) =

(
x̂

1

= x̂

1|0 + G1(x̂z
1

� x̂
1|0)

�

2

1

= (1� G
1

)�

2

1|0

bel(x

2

) =

(
x̂

2|1 = Ax̂

1

+ Bu

2

�

2

2|1 = A
2

�

2

1

+ �

2

action
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O B S E R VAT I O N S  O N  L O W - PA S S  F I LT E R S
OBSERVATIONS ON LOW-PASS FILTERS

The equations are analogous to those found for the recursive averaging process with the
application of the Least Squares to satisfy the ML criterion to maximize the likelihood of the
observations (check the slides of Lecture 12)

Without a process dynamics with noise, the Kalman filter implements a recursive ML
estimator ! Least squares regression filter, which is a low-pass filter with a variable gain

A basic low-pass filter for the estimation of the variable x based on the inputs z , looks like:

x

n+1

= Gz

n+1

+ (1� G)x
n

= x

n

+ G(z

n+1

� x
n

), G 2 [0, 1]

when the constant smoothing parameter G is 1, then no smoothing is performed at all.

The above discrete-time implementation of a basic low-pass filter is an
exponentially-weighted moving average

The smoothing parameter G determines the weight that a sample input has in the
exponential average. That is, G defines the decay in the weight (importance) of a sample

G defines the number of the most recent samples that will really affect the average:

x

n

=

n�1X

i=1

G(1� G)n�i z
i

+ Gz

n

After n samples, the weight of the i�th sample, with n > i , is: G(1� G)n�i . For instance,
for G = 0.1 approximately only the latest 50 observations will really influence the estimate.

In the terminology of signal processing, G is related to the time constant ⌧ (related to the
cut-off frequency f

c

=

1

2⇡⌧

) of the filter and to the sampling rate 1

�T

through: G = �T

⌧+�T



ANOTHER EXAMPLE: MEASURES FROM AN ACCELEROMETER

A triple axis accelerometer provides 3D acceleration data. However, the three measures are
obtained through independent circuitry, therefore each dimension can be treated independently.

A 1D Kalman filter is used to estimate the correct acceleration a along a single axis based on
the stream of input measures. No control actions are included, Bu = 000, such that the state
dynamics reduces to: ak+1 === ak + ⌫

�

2

⌫

and �2
w

represent respectively process and sensor noise, which are given parameters

�

2

a

k

, the error in the estimate, must be initialized, but its initial value is not critical since it
gets adjusted during the operations, however it needs to be set high enough at the beginning

The initial value for the estimate a
0

is also not very important for the correct execution of
the algorithm

The values for the process and sensor noise are critical to get a good behavior.
How do we set them? 17
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MEASURES FROM AN ACCELEROMETER

Process noise, �2
⌫

= 128 (max value) - Sensor noise, �2
w

= 10 (⇡ 8%)

Observations: nearly no difference between filtered data (white) and original data (gray),
since the filter cannot smooth the data due to the high process error, it can only follow the
data.
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MEASURES FROM AN ACCELEROMETER

Process noise, �2
⌫

= 4 (⇡ 3%) - Sensor noise, �2
w

= 10 (⇡ 8%)

Observations: Filtered values are pretty close to real values, but start to show less noise,
with the sensor data often overshooting the filtered ones.
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MEASURES FROM AN ACCELEROMETER

Process noise, �2
⌫

= 0.125 (⇡ 0.1%) - Sensor noise, �2
w

= 10 (⇡ 8%)

Observations: Now the filtered signal is much less noisy than the original, however it lags a
bit behind the real data.

20
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MEASURES FROM AN ACCELEROMETER

Process noise, �2
⌫

= 0.125/2 (⇡ 0.05%) - Sensor noise, �2
w

= 1 (⇡ 0.8%)

Observations: Decreasing the sensor noise, the filter relies more on the sensor data and as
such it follows the data more closely, even if the process noise was further decreased

21
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Process noise, �2
⌫

= 0.125/2 (⇡ 0.05%) - Sensor noise, �2
w

= 4 (⇡ 3.5%)

Observations: Increasing the noise factor of the sensor a more stable result is obtained, with
a smoothed signal, which however systematically lags behind the data



MEASURES FROM AN ACCELEROMETER

Process noise, �2
⌫

= 0.125/2 (⇡ 0.05%) - Sensor noise, �2
w

= 32 (⇡ 25%)

Observations: the filtered signal is very smooth but lags significantly behind the real
measurements.
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KF FOR FILTERING AND FUSING THE VALUE OF N SENSORS

Scenario: The robot does not move, a stream of measures z
K

about some quantity ⇠ of
interest is obtained from an array of n sensors. Each sensor gives a reading with different
precision about the same quantity. The goal is to filter and fuse the data stream in order to
produce at each time step k the best estimate for the quantity ⇠
(Filtering and fusion problem)

The state-observation equations: the state vector ⇠ corresponds to the measure of interest:

⇠
k+1

= ⇠
k

+ ⌫
k

z
k+1

= C⇠
k

+ w
k

Array of range finders - The robot has n devices that all measure the the range ⇢ and the
bearing angle � of the closest obstacle wrt to the robot using n different technologies with
different reliability. Therefore, in this case the state vector is

⇥
⇢ �

⇤
T , and the (constant)

matrix C, of dimension 2n⇥ 2, is a vector of n identity sub-matrices of dimension 2⇥ 2, such
that the observation equation becomes:

z
k+1

=

2

66666664

⇢

1

k+1

�

1

k+1

. . .

⇢

n

k+1

�

n

k+1

3

77777775

2n⇥2

= C⇠
k

+ w
k

=

2

666666664

1 0

0 1

. . . . . .

1 0

0 1

3

777777775

2n⇥2

"
⇢

k

�

k

#

+

2

66666664

w

1

k⇢

w

1

k�

. . .

w

n

k⇢

w

n

k�

3

77777775

2n⇥1 24
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KF FOR FILTERING AND FUSING THE VALUE OF N SENSORS

The KF equations:

At every time step k:

ˆ⇠
k+1|k = ˆ⇠k

P
k+1|k = Pk + Vk

At every time step k + 1 when an observation z
k+1

is available:

ˆ⇠
k+1

=

ˆ⇠
k+1|k + Gk+1(zk+1 � Cˆ⇠k+1|k)

P
k+1

= P
k+1|k � Gk+1CPk+1|k

G
k+1

= P
k+1|kC

T

(CP
k+1|kC

T

+W
k+1

)

�1

The innovation term:
✏
k+1

= z
k+1

� C
k+1

ˆ⇠
k+1|k

produces a 2n ⇥ 1 vector of differences between the new observed set of measures and the
current estimate. This difference is weighted by the gain G

k+1

, that considers the variance
associated to each different sensor and measurement, when implementing the correction to
the state vector:

ˆ⇠
k+1

=

ˆ⇠
k+1|k + Gk+1✏k+1

G
k+1

has dimensions 2⇥ 2n. If we write it in a compact way as:

G
k+1

=

2

6664

1

⌘

1

(k+1)⇢

0 . . .

1

⌘

n

(k+1)⇢

0

0

1

⌘

1

(k+1)�

. . . 0

1

⌘

n

(k+1)�

3

7775 =

"
G⇢
k+1

G�
k+1

#

where each ⌘i is related to the current variance estimate associated to the measure of the
i-th sensor, the product G

k+1

✏
k+1

can be read as the scalar products G⇢
k+1

✏
k+1

and
G�
k+1

✏
k+1

, that result in the (covariance) weighted sum of the inputs from all sensors to
compute the correction to the ⇢ and � components of the state ! sensor fusion 25
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