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EKF FOR MAP-BASED ROBOT LOCALIZATION

Proprioceptive
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1. Action/prediction update: Proprioceptive sensing

2. Perception/measurement update: Exteroceptive sensing

1. Odometry measures: EKF with only motion

2. Detection of landmarks: EKF with motion + observations
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DISCRETE-TIME MOTION EQUATIONS 
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From Runge-Kutta numeric integration 
of pose evolution kinematic equations.  
Assume that the odometry model is 
perfect, based on measured distance 

𝛥S, and heading variation 𝛥𝜽

In absence of specific information, motion noise is modeled as  
Gaussian white noise (and the two noise components are assumed to be uncorrelated) 
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Process noise

Odometry measurements are noisy!  
 ➔ Random noise is added to 𝛥S and 𝛥𝜽  to model motion’s kinematics
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Discrete-time 
process (motion)  

equations
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NON LINEARITY OF DISCRETE-TIME MOTION EQUATIONS
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Discrete-time 
process (motion)  

equations

⇠k+1 = f (⇠k ,�Sk ,�✓k , ⌫k), ⌫k =
⇥
⌫sk ⌫✓k

⇤T ⇠ N(0,Vk)

Process’ dynamics function, f(), is not linear  
➜ Process equations do not meet the linearity requirement for using the Kalman filter 

Linearize pose evolution f() in the neighborhood of [ ξ̂k|k  uk (𝝂k = 0)],  
the current state estimate, controls (𝛥Sk and 𝛥𝜽k), and mean of process noise  

f (⇠k , uk , ⌫k) = f (⇠, u, ⌫)|b⇠k|k ,uk ,0 + (⇠k �
b⇠k|k)F ⇠|b⇠k|k ,uk ,0 + (⌫k � 0)F ⌫ |b⇠k|k ,uk ,0

= f k(b⇠k|k , uk , 0) + (⇠k � b⇠k|k)F k⇠ + ⌫kF k⌫1st order 
Taylor series

Linear in ξk and 𝝂k 
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EXTENDED KALMAN FILTER (EKF): LINEARIZED MOTION MODEL 

Linear(ized) discrete-time 
process (motion) equations

⇠k+1 = f k(b⇠k|k , uk , 0) + (⇠k � b⇠k|k)F k⇠ + ⌫kF k⌫

Scenario (Prediction from motion): The robot does move but no external observations 
are made. Proprioceptive measures from the on-board odometry sensors are used to model 
robot’s motion dynamics avoiding to consider the direct control inputs. 

Linearization of motion dynamics using the Jacobians F k⇠ and F k⌫ , that have

to be evaluated in (⇠k = b⇠k|k , uk , ⌫k = 0)

= 0

➔ Rules for linear transformations of mean and (co)variance of Gaussian variables can be applied

Measurement correction

8
>><

>>:

b⇠k+1 = b⇠k+1|k + Gk+1(zk+1 � Ck+1b⇠k+1|k) (State update)

P k+1 = P k+1|k � Gk+1Ck+1P k+1|k (Covariance update)

Gk+1 = P k+1|kC
T
k+1(Ck+1P k+1|kC

T
k+1 +W k+1)

�1
(Kalman gain)

Extended Kalman Filter (EKF) - Motion onlyThe EKF equations:

Prediction update

( b⇠k+1|k = f k(b⇠k|k , 0;�Sk ,�✓k) + (b⇠k|k � b⇠k|k)F ⇠|b⇠k ,uk ,0 (State prediction)

P k+1|k = F k⇠P kF
T
k⇠ + F k⌫V kF

T
k⌫ (Covariance prediction)
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EKF JACOBIANS FOR THE LINEARIZED MOTION MODEL 

The Jacobian of the non-linear function f() is computed in [ ξ̂k|k  uk (𝝂k = 0)], 
the current state estimate (the mean), the current controls, the mean of the Gaussian noise

f() is a vector function with 
three function components:
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RECAP ON DERIVATIVES, GRADIENTS, AND JACOBIANS

Def. Derivative: Given a scalar function f : X ✓ R 7! R, if the limit
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RECAP ON DERIVATIVES, GRADIENTS, AND JACOBIANS

Gradient: “derivative” for scalar functions of multiple variables ! Normal to the tangent
hyperplane to the function graph. Given a scalar, differentiable, multi-variable function
f : Rn 7! R, its gradient is the vector of its partial derivatives:
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For f : X ✓ Rn 7! R, the Taylor series becomes:
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Removing the quadratic part, the linear approximation is obtained, that is, the equation of
the tangent hyperplane in x

0

, where the gradient is normal to the tangent hyperplane

Jacobian: “gradient” for vector functions of multiple vari-
ables! Each function component has a tangent hyperplane
to the function graph ! Map of tangent hyperplanes
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ABOUT THE LINEARIZATION IN THE EKF: LINEAR CASE

9
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ABOUT THE LINEARIZATION IN THE EKF: NON LINEAR CASE
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E F F E C T  O F  L I N E A R I Z AT I O N :  N O N  L I N E A R  C A S E
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E F F E C T  O F  L I N E A R I Z AT I O N :  N O N  L I N E A R  C A S EEFFECT OF EKF LINEARIZATION



EFFECT OF EKF LINEARIZATION
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EFFECT OF EKF LINEARIZATION
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ERROR IN LOCALIZATION KEEPS GROWING

The ellipses in the plot show the error in (x, y), but also the error in ✓ (the third component
of the covariance matrix) grows (but usually less than that in (x, y))
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UNCERTAINTY VS. MAGNITUDE OF PROCESS COVARIANCE

The magnitude of the total uncertainty, including both position and heading, is quantified by

the
q
det (

ˆ

P ), shown in the plot for different values of V = ↵V 0, ↵ = {0.5, 1, 2} 15

U N C E R TA I N T Y  A S  P R O C E S S  VA R I A N C E
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EKF FOR MAP-BASED ROBOT LOCALIZATION

Proprioceptive
information

Ex
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1. Action/prediction update: Proprioceptive sensing

2. Perception/measurement update: Exteroceptive sensing

1. Odometry measures: EKF with only motion

2. Detection of landmarks: EKF with motion + observations



USING MAPS TO REDUCE ERRORS

Exteroceptive measures are needed in the filter to reduce pose uncertainty

A map is provided to the robot: a list of objects in the environment along with their
properties

Let’s consider the case in which the map contains n fixed landmarks with their position.
Each landmark is identifiable by the robot through a set of detectable features

17
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LANDMARK DETECTION

The robot is equipped with (range finder) sensors that provide observations of the landmarks
with respect to the robot as described by the observation model:

z
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is the bearing angle of the landmark with respect to
the robot (i.e., landmark’s position expressed in polar coordinates in the robot’s local frame)
In the considered scenario, an observation also returns the identity i of the sensed landmark

In more general terms, the observation of the landmarks is performed through the observation
of a feature vector (e.g., a set of geometric features like line or arc segments), that in turn
need to be associated to a specific landmark ! data association problem, to distinguish
among different landmarks as well as to discard pure noise, which is not considered here
The knowledge of the identity i of the landmark allows the robot to retrieve from the map
the Cartesian coordinates (�i
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i
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) of the landmark

In absence of specific information, the sensor noise is modeled as Gaussian white noise and
the two noise components of the sensing are assumed to be uncorrelated:
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LANDMARK DETECTION AND OBSERVATION MODEL

Function h
k

plays the role of f for the observations:
it allows to compute the predicted measurement
from the predicted state ˆ⇠

k+1|k . It maps the state
vector into the observation vector z

k+1

At time k, the observation model
h
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accounting for sensor noise

In the scenario, at pose ⇠
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the robot is expected to
detect landmark i at a defined range ⇢ and bearing
�, that is, through the measure z
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= (⇢,�) that
can be possibly corrupted by white Gaussian noise

Since h
k

maps the state (robot coordinates in the
world reference frame) into the observation vector
(polar coordinates of the landmark in the robot’s
reference frame), the observation model is:
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Measurement noise in the range and the bearing is
assumed uncorrelated and Gaussian:
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For instance, �
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= 0.1m, �
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= 1o
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INTERPRETATION OF THE MEASUREMENTS

h
k

potentially changes at each time step, being parametrized by the coordinates
�i
k

= (�

i

kx

,�

i

ky

) of the specific landmark detected, whose identity i is assumed to be
known/acquired

Using the observation model h
k

, the robot computes the expected range and the bearing
angle to the detected feature based on its own predicted pose

ˆ⇠
k+1|k and the known position

of the landmark from the input map

Any difference between the actual observation z
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indicates an error in the robot’s position estimate:
the robot isn’t where it thought it was!

The difference is quantified in the Kalman filter by the innovation term:
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Same problem as before: h is a non linear function of the state!
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A NUMERIC EXAMPLE

Example: at step k + 1 the robot detects landmark i at a relative range of 2m and a relative
angle of 90o , that is, z
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=
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⇤
T ; from the input map, position of landmark i is
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LINEARIZATION OF THE OBSERVATION MODEL

Linearized observation model in the EKF:

1st order Taylor expansion for h
k

() in the neighborhood of the current state estimate, and
parametrized by the coordinates �

k

, results in:
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Therefore, observation predictions return linear and can be used in the EKF equations below
by using H, the Jacobian of h, to play the role of matrix C

Prediction update

(
ˆ⇠
k+1|k = fk(ˆ⇠k|k , uk , 000) (State prediction)

P
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T
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Measurement correction

8
>>>>><

>>>>>:

ˆ⇠
k+1

=

ˆ⇠
k+1|k + Gk+1(zk+1 � hk(ˆ⇠k+1|k , 000;�i

k

)) (State update)

P
k+1

= P
k+1|k � Gk+1Hk⇠Pk+1|k (Covariance update)
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JACOBIANS FOR THE LINEARIZED OBSERVATION MODEL

The Jacobian of the non-linear function h
k

is computed at the mean of the Gaussian
measurement noise (w = 000) and at the current state estimate ˆ⇠

k+1|k (which corresponds to
the estimated mean of the Gaussian distribution of the state variable):
Let’s adopt a notation similar to the one used before for f to express the function h
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EXPERIMENTAL RESULTS: AN ALMOST PERFECT STATE TRACKING

n = 20 landmarks are randomly deployed in a squared environment of 20⇥20 m2
�

⇢

= 0.1 m, �
�

= 1o
Every n steps, a reading is performed, returning the measured range and bearing to a
randomly selected landmark
This is a quite favorable scenario for the EKF 24
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THE EVOLUTION OF THE ERROR: NO SYSTEMATIC GROWTH
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KALMAN WITH SPORADIC MEASURES: ENVIRONMENT BEACONS

Simulated run with no visible beacons.

The triangles represent the actual robot position and orientation
⇥
x(k), y(k), ✓(k)

⇤
T

, the
rectangles represent the estimated robot pose, the ellipses represent the confidence in the
estimates of x(k) and y(k)
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KALMAN WITH SPORADIC MEASURES: ENVIRONMENT BEACONS

Simulated run taking observations of a single wall beacon using a sonar sensors.

After the wall comes into view, the error ellipse shrinks perpendicular to the wall as a
posteriori confidence in the estimate of x(k) and y(k) increases.

Note that the only part of a smooth wall that can be “seen” by a sonar sensor is the portion
of the wall that is perpendicular to the incident sonar beam. 27
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KALMAN WITH SPORADIC MEASURES: ENVIRONMENT BEACONS

Simulated run with localization from first one, then two wall beacons.

After the first wall comes into view, the error ellipse shrinks perpendicular to the wall as a
posteriori confidence in the estimate of x(k) and y(k) increases. The same happens with the
view of the second wall, overall reducing estimate uncertainty. 28
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KALMAN WITH SPORADIC MEASURES: ENVIRONMENT BEACONS

Simulated run with localization from a sequence of wall beacons

The presence of multiple wall beacons allows to always keep uncertainty estimation very low.
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