16-311-O INTRODUCTION TO ROBOTICS FALL'17

LECTURE 20: Extended Kalman Filter

INSTRUCTOR:
GIANNI A. DI CARO

EKF FOR MAP-BASED ROBOT LOCALIZATION

1. Odometry measures: EKF with only motion

DISCRETE-TIME MOTION EQUATIONS

$$
\xi_{k+1}=\left[\begin{array}{l}
x_{k+1} \\
y_{k+1} \\
\theta_{k+1}
\end{array}\right]=\left[\begin{array}{c}
x_{k}+\Delta S_{k} \cos \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}\right) \\
y_{k}+\Delta S_{k} \sin \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}\right) \\
\theta_{k}+\Delta \theta_{k}
\end{array}\right]
$$

From Runge-Kutta numeric integration of pose evolution kinematic equations.
Assume that the odometry model is perfect, based on measured distance
$\Delta \mathrm{S}$, and heading variation $\Delta \boldsymbol{\theta}$
Odometry measurements are noisy!
\rightarrow Random noise is added to $\Delta \mathrm{S}$ and $\Delta \boldsymbol{\theta}$ to model motion's kinematics

Discrete-time process (motion) equations

$$
\xi_{k+1}=\left[\begin{array}{l}
x_{k} \\
y_{k} \\
\theta_{k}
\end{array}\right]+\left[\begin{array}{c}
\left(\Delta S_{k}+\nu_{k}^{s}\right) \cos \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}+\nu_{k}^{\theta}\right) \\
\left(\Delta S_{k}+\nu_{k}^{s}\right) \sin \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}+\nu_{k}^{\theta}\right) \\
\Delta \theta_{k}+\nu_{k}^{\theta}
\end{array}\right]
$$

In absence of specific information, motion noise is modeled as
Gaussian white noise (and the two noise components are assumed to be uncorrelated)

Process noise

$$
\nu_{k}=\left[\begin{array}{ll}
\nu_{k}^{s} & \nu_{k}^{\theta}
\end{array}\right]^{T} \sim N\left(0, \mathbf{V}_{\mathrm{k}}\right), \quad \mathbf{V}_{k}=\left[\begin{array}{cc}
\sigma_{k s}^{2} & 0 \\
0 & \sigma_{k \theta}^{2}
\end{array}\right]
$$

NON LINEARITY OF DISCRETE-TIME MOTION EQUATIONS

Discrete-time process (motion) equations

$$
\xi_{k+1}=\left[\begin{array}{l}
x_{k} \\
y_{k} \\
\theta_{k}
\end{array}\right]+\left[\begin{array}{c}
\left(\Delta S_{k}+\nu_{k}^{s}\right) \cos \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}+\nu_{k}^{\theta}\right) \\
\left(\Delta S_{k}+\nu_{k}^{s}\right) \sin \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}+\nu_{k}^{\theta}\right) \\
\Delta \theta_{k}+\nu_{k}^{\theta}
\end{array}\right]
$$

$$
\boldsymbol{\xi}_{k+1}=f\left(\boldsymbol{\xi}_{k}, \Delta S_{k}, \Delta \theta_{k}, \boldsymbol{\nu}_{k}\right), \quad \boldsymbol{\nu}_{k}=\left[\begin{array}{cc}
\nu_{k}^{s} & \nu_{k}^{\theta}
\end{array}\right]^{T} \sim N\left(0, \mathbf{V}_{k}\right)
$$

Process' dynamics function, $\boldsymbol{f}()$, is not linear
\rightarrow Process equations do not meet the linearity requirement for using the Kalman filter

Linearize pose evolution $f()$ in the neighborhood of $\left[\hat{\xi}_{k \mid k} \quad u_{k}\left(v_{k}=0\right)\right]$, the current state estimate, controls $\left(\Delta \mathrm{S}_{\mathrm{k}}\right.$ and $\left.\Delta \theta_{\mathrm{k}}\right)$, and mean of process noise

$$
\begin{aligned}
\boldsymbol{f}\left(\boldsymbol{\xi}_{k}, \boldsymbol{u}_{k}, \boldsymbol{\nu}_{k}\right) & =\left.\boldsymbol{f}(\boldsymbol{\xi}, \boldsymbol{u}, \boldsymbol{\nu})\right|_{\widehat{\boldsymbol{\xi}}_{k \mid k}, \boldsymbol{u}_{k}, 0}+\left.\left(\boldsymbol{\xi}_{k}-\widehat{\boldsymbol{\xi}}_{k \mid k}\right) \boldsymbol{F}_{\boldsymbol{\xi}}\right|_{\widehat{\boldsymbol{\xi}}_{k \mid k}, \boldsymbol{u}_{k}, 0}+\left.\left(\boldsymbol{\nu}_{k}-\mathbf{0}\right) \boldsymbol{F}_{\nu}\right|_{\widehat{\boldsymbol{\xi}}_{k \mid k}, \boldsymbol{u}_{k}, 0} \\
\text { 1st order } & =\boldsymbol{f}_{k}\left(\widehat{\boldsymbol{\xi}}_{k \mid k}, \boldsymbol{u}_{k}, \mathbf{0}\right)+\left(\boldsymbol{\xi}_{k}-\widehat{\boldsymbol{\xi}}_{k \mid k}\right) \boldsymbol{F}_{k \boldsymbol{\xi}}+\boldsymbol{\nu}_{k} F_{k \nu} \quad \underline{\text { Linear in } \boldsymbol{\xi}_{k} \text { and } \boldsymbol{v}_{\mathbf{k}}}
\end{aligned}
$$

EXTENDED KALMAN FILTER (EKF): LINEARIZED MOTION MODEL

Scenario (Prediction from motion): The robot does move but no external observations are made. Proprioceptive measures from the on-board odometry sensors are used to model robot's motion dynamics avoiding to consider the direct control inputs.

Linear(ized) discrete-time process (motion) equations

$$
\boldsymbol{\xi}_{k+1}=\boldsymbol{f}_{k}\left(\widehat{\boldsymbol{\xi}}_{k \mid k}, \boldsymbol{u}_{k}, \mathbf{0}\right)+\left(\boldsymbol{\xi}_{k}-\widehat{\boldsymbol{\xi}}_{k \mid k}\right) \boldsymbol{F}_{k \boldsymbol{\xi}}+\boldsymbol{\nu}_{k} \boldsymbol{F}_{k \nu}
$$

Linearization of motion dynamics using the Jacobians $\boldsymbol{F}_{k \xi}$ and $\boldsymbol{F}_{k \nu}$, that have to be evaluated in $\left(\boldsymbol{\xi}_{k}=\widehat{\boldsymbol{\xi}}_{k \mid k}, \boldsymbol{u}_{k}, \boldsymbol{\nu}_{k}=0\right)$
\rightarrow Rules for linear transformations of mean and (co)variance of Gaussian variables can be applied

Extended Kalman Filter (EKF) - Motion only

Prediction update $\begin{cases}\widehat{\boldsymbol{\xi}}_{k+1 \mid k}=\boldsymbol{f}_{k}\left(\widehat{\boldsymbol{\xi}}_{k \mid k}, \mathbf{0} ; \Delta S_{k}, \Delta \theta_{k}\right)+\left(\widehat{\boldsymbol{\xi}}_{k \mid k}-\widehat{\boldsymbol{\xi}}_{k \mid k}\right) \boldsymbol{F}_{\xi}{\widehat{⿹_{k}, u_{k}, 0}} & \text { (State prediction) } \\ \boldsymbol{P}_{k+1 \mid k}=F_{k \xi} \boldsymbol{P}_{k} F_{k \xi}^{T}+F_{k \nu} \boldsymbol{V}_{k} F_{k \nu}^{T} \leqslant 0 & \text { (Covariance prediction) }\end{cases}$
Measurement correction $\begin{cases}\widehat{\boldsymbol{\xi}}_{k+1}=\widehat{\boldsymbol{\xi}}_{k+1 \mid k}+\boldsymbol{G}_{k+1}\left(\boldsymbol{z}_{k+1}-\boldsymbol{C}_{k+1} \widehat{\boldsymbol{\xi}}_{k+1 \mid k}\right) & \text { (State update) } \\ \boldsymbol{P}_{k+1}=\boldsymbol{P}_{k+1 \mid k}-\boldsymbol{G}_{k+1} \boldsymbol{C}_{k+1} \boldsymbol{P}_{k+1 \mid k} & \text { (Covariance update) } \\ \boldsymbol{G}_{k+1}=\boldsymbol{P}_{k+1 \mid k} \boldsymbol{C}_{k+1}^{T}\left(\boldsymbol{C}_{k+1} \boldsymbol{P}_{k+1 \mid k} \boldsymbol{C}_{k+1}^{T}+\boldsymbol{W}_{k+1}\right)^{-1} \text { (Kalman gain) } 5\end{cases}$

EKF JACOBIANS FOR THE LINEARIZED MOTION MODEL

The Jacobian of the non-linear function $\boldsymbol{f}()$ is computed in $\left[\hat{\boldsymbol{\xi}}_{\mathbf{k} \mid \mathbf{k}} \quad \mathbf{u}_{\mathbf{k}}\left(\nu_{\mathbf{k}}=\mathbf{0}\right)\right]$, the current state estimate (the mean), the current controls, the mean of the Gaussian noise
$\left.\boldsymbol{f}_{(}\right)$is a vector function with three function components:

$$
\begin{aligned}
& f_{k x}=x_{k}+\left(\Delta S_{k}+\nu_{k}^{s}\right) \cos \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}+\nu_{k}^{\theta}\right) \\
& f_{k y}=y_{k}+\left(\Delta S_{k}+\nu_{k}^{s}\right) \sin \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}+\nu_{k}^{\theta}\right) \\
& f_{k \theta}=\theta_{k}+\Delta \theta_{k}+\nu_{k}^{\theta}
\end{aligned}
$$

The Jacobian matrix of f :

$$
\boldsymbol{F}_{k}\left(x_{k}, y_{k}, \theta_{k}, \nu_{k}^{s}, \nu_{k}^{\theta}\right)=\left[\begin{array}{lll}
\nabla f_{k x} & \nabla f_{k y} & \nabla f_{k \theta}
\end{array}\right]^{\top}=\left[\begin{array}{lllll}
\frac{\partial f_{k x}}{\partial x_{k}} & \frac{\partial f_{k x}}{\partial y_{k}} & \frac{\partial f_{k x}}{\partial \theta_{k}} & \frac{\partial f_{k x}}{\partial \nu_{k}^{s}} & \frac{\partial f_{k x}}{\partial \nu_{k}^{\theta}} \\
\frac{\partial f_{k y}}{\partial x_{k}} & \frac{\partial f_{k y}}{\partial y_{k}} & \frac{\partial f_{k y}}{\partial \theta_{k}} & \frac{\partial f_{k y}}{\partial \nu_{k}^{s}} & \frac{\partial f_{k y}}{\partial \nu_{k}^{\theta}} \\
\frac{\partial f_{k \theta}}{\partial x_{k}} & \frac{\partial f_{k \theta}}{\partial y_{k}} & \frac{\partial f_{k \theta}}{\partial \theta_{k}} & \frac{\partial f_{k \theta}}{\partial \nu_{k}^{s}} & \frac{\partial f_{k \theta}}{\partial \nu_{k}^{\theta}}
\end{array}\right]=\left[\begin{array}{ll}
F_{k \xi} & F_{k \nu}
\end{array}\right]
$$

$$
F_{k \xi}=\left[\begin{array}{ccc}
1 & 0 & -\Delta S_{k} \sin \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}\right) \\
0 & 1 & \Delta S_{k} \cos \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}\right) \\
0 & 0 & 1
\end{array}\right]_{\hat{\zeta}_{k k, k}, u_{k}, \nu=0} \quad F_{k \nu}=\left[\begin{array}{cc}
\cos \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}\right) & -\Delta S_{k} \sin \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}\right) \\
\sin \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}\right) & \Delta S_{k} \cos \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}\right) \\
0 & 1
\end{array}\right]_{\hat{\zeta}_{k k, k}, u_{k}, \nu=0}
$$

RECAP ON DERIVATIVES, GRADIENTS,JACOBIANS

- Def. Derivative: Given a scalar function $f: X \subseteq \mathbb{R} \mapsto \mathbb{R}$, if the limit

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

exists and takes a finite value, f is differentiable in $x_{0} \in X$ and the value of the limit is the derivative of the function in x_{0}, which is also indicated with $f^{\prime}\left(x_{0}\right) \stackrel{\text { def }}{=} \frac{d f}{d x}\left(x_{0}\right)$

- Geometric interpretation: the derivative is the slope of the tangent to the graph of f in point $\left(x_{0}, f\left(x_{0}\right)\right)$. This can be shown considering that the line passing for two points ($x_{0}, f\left(x_{0}\right)$) and $\left(\left(x_{0}+h\right), f\left(x_{0}+h\right)\right)$ belonging to the graph f, is $y=m x+f\left(x_{0}+h\right)$, where the slope is $m=\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{\left(x_{0}+h\right)-x_{0}}$. If $h \rightarrow 0$, the secant to the curve overlaps with the tangent in x_{0}. That is, the equation of the tangent to f in x_{0} is: $y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$, which is precisely the first-order Taylor series computed in x_{0}.

RECAP ON DERIVATIVES, GRADIENTS,JACOBIANS

- Gradient: "derivative" for scalar functions of multiple variables \rightarrow Normal to the tangent hyperplane to the function graph. Given a scalar, differentiable, multi-variable function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$, its gradient is the vector of its partial derivatives:

$$
\nabla f_{\left(x_{1}, x_{2}, \ldots, x_{n}\right)} \stackrel{\text { def }}{=}\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)=\frac{\partial f}{\partial x_{1}} e_{1}+\frac{\partial f}{\partial x_{2}} e_{2}+\ldots+\frac{\partial f}{\partial x_{n}} e_{n}
$$

- For $f: X \subseteq \mathbb{R}^{n} \mapsto \mathbb{R}$, the Taylor series becomes:

$$
f(x)_{\mid x_{0}}=\sum_{|k| \geq 0} \frac{1}{k!} \partial^{k}\left[f\left(x_{0}\right)\right]\left(x-x_{0}\right)^{k}
$$

where k is a multi-index, an integer-valued vector, $k=\left(k_{1}, k_{2}, \ldots, k_{n}\right), k_{i} \in \mathbb{Z}^{+}$, and $\partial^{k} f$ means $\partial_{1}^{k_{1}} f \partial_{2}^{k_{2}} f \cdots \partial_{n}^{k_{n}} f$, where $\partial_{j}^{i} f=\frac{\partial^{i} f}{\partial x_{i}^{j}}$. The 2nd order polynomial is:

$$
f(x)=f\left(x_{0}\right)+\nabla f\left(x_{0}\right)^{T}\left(x-x_{0}\right)+\frac{1}{2}\left(x-x_{0}\right)^{T} \boldsymbol{H}\left(f\left(x_{0}\right)\right)\left(x-x_{0}\right)
$$

Removing the quadratic part, the linear approximation is obtained, that is, the equation of the tangent hyperplane in x_{0}, where the gradient is normal to the tangent hyperplane

Jacobian: "gradient" for vector functions of multiple variables \rightarrow Each function component has a tangent hyperplane to the function graph \rightarrow Map of tangent hyperplanes

EFFECT OF LINEARIZATION: LINEAR CASE

EFFECT OF LINEARIZATION: NON LINEAR CASE

EFFECT OF LINEARIZATION: NON LINEAR CASE

EFFECT OF LINEARIZATION: NON LINEAR CASE

EFFECT OF LINEARIZATION: NON LINEAR CASE

ERROR IN LOCALIZATION KEEPS GROWING

- The ellipses in the plot show the error in (x, y), but also the error in θ (the third component of the covariance matrix) grows (but usually less than that in (x, y))

UNCERTAINTY AS PROCESS VARIANCE

- The magnitude of the total uncertainty, including both position and heading, is quantified by the $\sqrt{\operatorname{det}(\hat{P})}$, shown in the plot for different values of $V=\alpha V^{\prime}, \alpha=\{0.5,1,2\}$

EKF FOR MAP-BASED ROBOT LOCALIZATION

1. Odometry measures: EKF with only motion

USING MAPS TO REDUCE THE ERROR

- Exteroceptive measures are needed in the filter to reduce pose uncertainty
- A map is provided to the robot: a list of objects in the environment along with their properties
- Let's consider the case in which the map contains n fixed landmarks with their position. Each landmark is identifiable by the robot through a set of detectable features

LANDMARK-BASED MAPS

The robot is equipped with (range finder) sensors that provide observations of the landmarks with respect to the robot as described by the observation model:

$$
z_{k+1}=\boldsymbol{h}_{k}\left(\boldsymbol{\xi}_{k}, \boldsymbol{w}_{k} ; \boldsymbol{\lambda}_{k}^{i}\right)
$$

$$
\begin{gathered}
\boldsymbol{\lambda}_{k}^{i}=\left[\begin{array}{ll}
\lambda_{k x}^{i} & \lambda_{k y}^{i}
\end{array}\right]^{T} \text { is the known (from map) location in the world frame of the landmark } \\
\text { observed at time step } k, \boldsymbol{w}_{k} \text { models sensing errors, } \boldsymbol{\xi}_{k}=\left[\begin{array}{lll}
x_{k} & y_{k} & \theta_{k}
\end{array}\right]^{T}
\end{gathered}
$$

- Using its range sensor, the robot performs the measure $z_{k+1}=\left[\rho_{k} \beta_{k}\right]^{T}$ relative to landmark i detected at step $k: \rho_{k}$ is the range, β_{k} is the bearing angle of the landmark with respect to the robot (i.e., landmark's position expressed in polar coordinates in the robot's local frame)
- In the considered scenario, an observation also returns the identity i of the sensed landmark
- In more general terms, the observation of the landmarks is performed through the observation of a feature vector (e.g., a set of geometric features like line or arc segments), that in turn need to be associated to a specific landmark \rightarrow data association problem, to distinguish among different landmarks as well as to discard pure noise, which is not considered here
- The knowledge of the identity i of the landmark allows the robot to retrieve from the map the Cartesian coordinates $\left(\lambda_{k x}^{i}, \lambda_{k y}^{i}\right)$ of the landmark
- In absence of specific information, the sensor noise is modeled as Gaussian white noise and the two noise components of the sensing are assumed to be uncorrelated:

$$
\boldsymbol{w}_{k}=\left[\begin{array}{ll}
w_{k}^{\rho} & w_{k}^{\beta}
\end{array}\right]^{T} \sim N\left(0, \boldsymbol{W}_{k}\right), \quad \boldsymbol{W}_{k}=\left[\begin{array}{cc}
\sigma_{k \rho}^{2} & 0 \\
0 & \sigma_{k \beta}^{2}
\end{array}\right]
$$

LANDMARK DETECTION AND OBSERVATION MODEL

- Function \boldsymbol{h}_{k} plays the role of \boldsymbol{f} for the observations: it allows to compute the predicted measurement from the predicted state $\hat{\xi}_{k+1 \mid k}$. It maps the state vector into the observation vector z_{k+1}

At time k, the observation model

$$
\boldsymbol{h}_{k}\left(\boldsymbol{\xi}_{k}, \boldsymbol{w}_{k} ; \boldsymbol{\lambda}\right)
$$

returns the observation z_{k+1}
that the robot is expected to make in state $\boldsymbol{\xi}_{k}$ accounting for sensor noise

In the scenario, at pose $\boldsymbol{\xi}_{k}$ the robot is expected to detect landmark i at a defined range ρ and bearing β, that is, through the measure $z_{k+1}=(\rho, \beta)$ that can be possibly corrupted by white Gaussian noise

- Since \boldsymbol{h}_{k} maps the state (robot coordinates in the world reference frame) into the observation vector (polar coordinates of the landmark in the robot's reference frame), the observation model is:

$$
z_{k+1}=\left[\begin{array}{c}
\sqrt{\left(\lambda_{k x}^{i}-x_{k}\right)^{2}+\left(\lambda_{k y}^{i}-y_{k}\right)^{2}} \\
\arctan \left(\left(\lambda_{y x}^{i}-y_{k}\right) /\left(\lambda_{k x}^{i}-x_{k}\right)\right)-\theta_{k}
\end{array}\right]+\left[\begin{array}{c}
w_{k}^{\rho} \\
w_{k}^{\beta}
\end{array}\right]_{19}
$$

WHAT MEASUREMENTS TELL

- \boldsymbol{h}_{k} potentially changes at each time step, being parametrized by the coordinates $\boldsymbol{\lambda}_{k}^{i}=\left(\lambda_{k x}^{i}, \lambda_{k y}^{i}\right)$ of the specific landmark detected, whose identity i is assumed to be known/acquired
- Using the observation model \boldsymbol{h}_{k}, the robot computes the expected range and the bearing angle to the detected feature based on its own predicted pose $\hat{\boldsymbol{\xi}}_{k+1 \mid k}$ and the known position of the landmark from the input map

Any difference between the actual observation $z_{k+1}=\left(\rho_{k}, \beta_{k}\right)$ and the estimated observation/position $\boldsymbol{h}_{k}\left(\hat{\boldsymbol{\xi}}_{k+1 \mid k} ; \boldsymbol{\lambda}_{k}^{i}\right)$ indicates an error in the robot's position estimate: the robot isn't where it thought it was!

The difference is quantified in the Kalman filter by the innovation term:

$$
\boldsymbol{\epsilon}_{k+1}=z_{k+1}-\boldsymbol{h}_{k}\left(\hat{\boldsymbol{\xi}}_{k+1 \mid k}, \mathbf{0} ; \boldsymbol{\lambda}_{k+1}^{i}\right)
$$

- Same problem as before: h is a non linear function of the state!

NUMERIC EXAMPLE

- Example: at step $k+1$ the robot detects landmark i at a relative range of 2 m and a relative angle of 90°, that is, $z_{k+1}=\left[\begin{array}{ll}2 & 90\end{array}\right]^{\top}$; from the input map, position of landmark i is $\boldsymbol{\lambda}^{i}=(3,3)$; robot's predicted pose according to the current state of the Kalman filter is $\hat{\xi}_{k+1 \mid k}=\left[\begin{array}{lll}2 & 2 & 0\end{array}\right]^{T}$, while its correct pose is $\boldsymbol{\xi}_{k+1}=\left[\begin{array}{lll}3 & 1 & 0\end{array}\right]^{T}$ (i.e., there is no sensing error, as it can be seen from the figure)

- The innovation is:

$$
\begin{aligned}
\boldsymbol{\epsilon}_{k+1} & =z_{k+1}-\boldsymbol{h}_{k}\left(\hat{\boldsymbol{\xi}}_{k+1 \mid k}, \mathbf{0} ; \boldsymbol{\lambda}_{k+1}^{i}\right) \\
& =\left[\begin{array}{c}
2 \\
90
\end{array}\right]-\left[\begin{array}{c}
\sqrt{1^{2}+1^{2}} \\
\arctan (1 / 1)-0
\end{array}\right]=\left[\begin{array}{c}
2-\sqrt{2} \\
45^{\circ}
\end{array}\right]
\end{aligned}
$$

In [m, rad] units, the Euclidean norm of the
innovation is: $\left[\begin{array}{cc}2-\sqrt{2} & 0.79\end{array}\right]^{T}$
$\Rightarrow\left\|\epsilon_{k+1}\right\|=\sqrt{(2-\sqrt{2})^{2}+0.79^{2}} \approx 0.98$

LINEARIZATION OF THE OBSERVATION MODEL

Linearized observation model in the EKF:

1st order Taylor expansion for $\boldsymbol{h}_{k}()$ in the neighborhood of the current state estimate, and parametrized by the coordinates $\boldsymbol{\lambda}_{k}$, results in:

$$
\begin{aligned}
\boldsymbol{h}_{k}\left(\boldsymbol{\xi}_{k}, \boldsymbol{w}_{k} ; \boldsymbol{\lambda}_{k}\right) & =\left.\boldsymbol{h}_{k}\left(\boldsymbol{\xi}, \boldsymbol{w} ; \boldsymbol{\lambda}_{k}\right)\right|_{\hat{\xi}_{k+1 \mid k}, 0}+\left.\left(\xi_{k}-\hat{\boldsymbol{\xi}}_{k+1 \mid k}\right) \boldsymbol{H}_{\xi}\right|_{\hat{\xi}_{k+1 \mid k}, 0}+\left.\left(w_{k}-0\right) \boldsymbol{H}_{w}\right|_{\hat{\xi}_{k+1 \mid k}, 0} \\
& =\boldsymbol{h}_{k}\left(\hat{\boldsymbol{\xi}}_{k+1 \mid k}, 0 ; \lambda_{k}\right)+\left(\boldsymbol{\xi}_{k}-\hat{\boldsymbol{\xi}}_{k+1 \mid k}\right) H_{k \xi}+w_{k} H_{k w}
\end{aligned}
$$

Therefore, observation predictions return linear and can be used in the EKF equations below by using \boldsymbol{H}, the Jacobian of \boldsymbol{h}, to play the role of matrix \boldsymbol{C}

$$
\text { Prediction update } \begin{cases}\hat{\boldsymbol{\xi}}_{k+1 \mid k}=\boldsymbol{f}_{k}\left(\hat{\boldsymbol{\xi}}_{k \mid k}, \boldsymbol{u}_{k}, \mathbf{0}\right) & \text { (State prediction) } \\ \boldsymbol{P}_{k+1 \mid k}=F_{k \xi} P_{k} \boldsymbol{F}_{k \xi}^{T}+\boldsymbol{F}_{k \nu} \boldsymbol{V}_{k} F_{k \nu}^{T} & \text { (Covariance prediction) }\end{cases}
$$

$$
\text { Measurement correction }\left\{\begin{array}{lr}
\hat{\boldsymbol{\xi}}_{k+1}=\hat{\boldsymbol{\xi}}_{k+1 \mid k}+\boldsymbol{G}_{k+1}\left(z_{k+1}-\boldsymbol{h}_{k}\left(\hat{\boldsymbol{\xi}}_{k+1 \mid k}, \mathbf{0} ; \boldsymbol{\lambda}_{k}^{i}\right)\right) & \text { (State update) } \\
\boldsymbol{P}_{k+1}=P_{k+1 \mid k}-\boldsymbol{G}_{k+1} \boldsymbol{H}_{k \xi} P_{k+1 \mid k} & \text { (Covariance update) } \\
\boldsymbol{G}_{k+1}=P_{k+1 \mid k} H_{k \xi}^{\top} \boldsymbol{S}_{k+1}^{-1} & \text { (Kalman gain) } \\
\boldsymbol{S}_{k+1}=H_{k \xi} P_{k+1 \mid k} H_{k \xi}^{\top}+H_{k w} \boldsymbol{W}_{k+1} H_{k w}{ }^{\top} &
\end{array}\right.
$$

JACOBIANS FOR THE LINEARIZED OBSERVATION MODEL

- The Jacobian of the non-linear function \boldsymbol{h}_{k} is computed at the mean of the Gaussian measurement noise $(\boldsymbol{w}=0)$ and at the current state estimate $\hat{\boldsymbol{\xi}}_{k+1 \mid k}$ (which corresponds to the estimated mean of the Gaussian distribution of the state variable):
- Let's adopt a notation similar to the one used before for \boldsymbol{f} to express the function \boldsymbol{h}_{k}, defining $\boldsymbol{h}_{k}=\left[\begin{array}{ll}h_{k \rho} & h_{k \beta}\end{array}\right]^{T}$ and including sensor noise:

$$
\begin{aligned}
& h_{k \rho}=\sqrt{\left(\lambda_{k x}^{i}-x_{k}\right)^{2}+\left(\lambda_{k y}^{i}-y_{k}\right)^{2}}+w_{k}^{\rho} \\
& h_{k \beta}=\arctan \left(\left(\lambda_{y x}^{i}-y_{k}\right) /\left(\lambda_{k x}^{i}-x_{k}\right)\right)-\theta_{k}+w_{k}^{\beta}
\end{aligned}
$$

The Jacobian matrix of \boldsymbol{h}_{k} is therefore:
$\boldsymbol{H}_{k}\left(x_{k}, y_{k}, \theta_{k}, w_{k}^{\rho}, w_{k}^{\beta}\right)=\left[\begin{array}{lll}\nabla h_{k \rho} & \nabla h_{k \beta}\end{array}\right]^{T}=\left[\begin{array}{lllll}\frac{\partial h_{k \rho}}{\partial x_{k}} & \frac{\partial h_{k \rho}}{\partial y_{k}} & \frac{\partial h_{k \rho}}{\partial \theta_{k}} & \frac{\partial h_{k \rho}}{\partial w_{k}^{\rho}} & \frac{\partial h_{k \rho}}{\partial w_{k}^{\beta}} \\ \frac{\partial h_{k \beta}}{\partial x_{k}} & \frac{\partial h_{k \beta}}{\partial y_{k}} & \frac{\partial h_{k \beta}}{\partial \theta_{k}} & \frac{\partial h_{k \beta}}{\partial w_{k}^{\rho}} & \frac{\partial h_{k \beta}}{\partial w_{k}^{\beta}}\end{array}\right]=\left[\begin{array}{llll}\boldsymbol{H}_{k \xi} & H_{k w}\end{array}\right]$

$$
H_{k \xi}=\left[\begin{array}{ccc}
-\frac{\lambda_{k x}^{i}-x_{k}}{r_{k}^{i}} & -\frac{\lambda_{k y}^{i}-y_{k}}{r_{k}^{i}} & 0 \\
\frac{\lambda_{k y}^{i}-y_{k}}{\left(r_{k}^{i}\right)^{2}} & -\frac{\lambda_{k x}^{i}-x_{k}}{\left(r_{k}^{i}\right)^{2}} & -1
\end{array}\right]_{\hat{\varepsilon}} \quad H_{k w}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

where r_{k}^{i} is the distance of landmark i from the predicted state: $r_{k}^{i}=\sqrt{\left(\lambda_{k x}^{i}-x_{k}\right)^{2}+\left(\lambda_{k y}^{i}-y_{k}\right)^{2}}{ }_{23}$

EXPERIMENTAL RESULTS: AN ALMOST PERFECT TRACKING

- $n=20$ landmarks are randomly deployed in a squared environment of $20 \times 20 \mathrm{~m}^{2}$
- $\sigma_{\rho}=0.1 \mathrm{~m}, \sigma_{\beta}=1^{\circ}$
- Every n steps, a reading is performed, returning the measured range and bearing to a randomly selected landmark
- This is a quite favorable scenario for the EKF

EVOLUTION OF THE ERROR: NO SYSTEMATIC GROWTH

EKF WITH ENVIRONMENT BEACONS

- Simulated run with no visible beacons.
- The triangles represent the actual robot position and orientation $[x(k), y(k), \theta(k)]^{T}$, the rectangles represent the estimated robot pose, the ellipses represent the confidence in the estimates of $x(k)$ and $y(k)$

EKF WITH ENVIRONMENT BEACONS

- Simulated run taking observations of a single wall beacon using a sonar sensors.
- After the wall comes into view, the error ellipse shrinks perpendicular to the wall as a posteriori confidence in the estimate of $x(k)$ and $y(k)$ increases.
- Note that the only part of a smooth wall that can be "seen" by a sonar sensor is the portion of the wall that is perpendicular to the incident sonar beam.

EKF WITH ENVIRONMENT BEACONS

- Simulated run with localization from first one, then two wall beacons.
- After the first wall comes into view, the error ellipse shrinks perpendicular to the wall as a posteriori confidence in the estimate of $x(k)$ and $y(k)$ increases. The same happens with the view of the second wall, overall reducing estimate uncertainty.

EKF WITH ENVIRONMENT BEACONS

- Simulated run with localization from a sequence of wall beacons
- The presence of multiple wall beacons allows to always keep uncertainty estimation very low.

