
16-311-Q INTRODUCTION TO ROBOTICS FALL’17

LECTURE 21:
EKF FOR MAP BUILDING

INSTRUCTOR:
GIANNI A. DI CARO

SUMMARY - EKF POSE PREDICTION: ODOMETRY+LANDMARKS+MAP

Scenario: The robot does move, external observations of landmarks are made, and a map is
given in input with the coordinates of the landmarks (Prediction problem)

2

S O FA R : W E H AV E A M A P, T H E R O B O T D O E S M O V E

SUMMARY - EKF POSE PREDICTION: ODOMETRY+LANDMARKS+MAP

Scenario: The robot does move, external observations of landmarks are made, and a map is
given in input with the coordinates of the landmarks (Prediction problem)

The state-observation equations: the state vector ⇠ corresponds to the 2D pose of the robot;
the observations of the landmarks are made using a range finder sensor that returns range ⇢

i

,
bearing �

i

and identity i of the observed landmark; the identity information is used to
retrieve the position (�i

x

,�

i

y

) of the landmark from the map:

⇠
k+1

=

2

664

x

k

y

k

✓

k

3

775+

2

664

(�S

k

+ ⌫

s

k

) cos(✓

k

+

�✓

k

2

+ ⌫

✓

k

)

(�S

k

+ ⌫

s

k

) sin(✓

k

+

�✓

k

2

+ ⌫

✓

k

)

�✓

k

+ ⌫

✓

k

3

775 = fk(⇠k , ⌫k ;�Sk ,�✓k)

z
k+1

=

2

4

q
(�

i

kx

� x
k

)

2

+ (�

i

ky

� y
k

)

2

arctan

⇣
(�

i

ky

� y
k

)/(�

i

kx

� x
k

)

⌘
� ✓

k

3

5
+

"
w

⇢

k

w

�

k

#

= h
k

(⇠
k

,w
k

;�i
k

)

Linearization of both motion dynamics and observation model is required

3

L I N E A R I Z AT I O N WA S R E Q U I R E D→E K F

Non linear equations → 1st Taylor series for linearization → EKF

SUMMARY - EKF POSE PREDICTION: ODOMETRY+LANDMARKS+MAP

The Jacobians F
k⇠ and F

kv of f
k

(), that have to be evaluated in (⇠
k

=

ˆ⇠
k|k , ⌫k = 0), for the

linearization of the motion dynamics:

F
k⇠ =

2

664

1 0 ��S
k

sin(✓

k

+

�✓

k

2

)

0 1 �S

k

cos(✓

k

+

�✓

k

2

)

0 0 1

3

775

ˆ⇠
k|k ,000

F
k⌫ =

2

664

cos(✓

k

+

�✓

k

2

) ��S
k

sin(✓

k

+

�✓

k

2

)

sin(✓

k

+

�✓

k

2

) �S

k

cos(✓

k

+

�✓

k

2

)

0 1

3

775

ˆ⇠
k|k ,000

The Jacobians H
k⇠ and H

kw of h
k

(), that have to be evaluated in (⇠
k

=

ˆ⇠
k+1|k , ⌫k = 0), for

the linearization of the observation model (the �i
k

are parameters):

H
k⇠ =

2

6664

�
�

i

kx

� x
k

r

i

k

�
�

i

ky

� y
k

r

i

k

0

�

i

ky

� y
k

(r

i

k

)

2

�
�

i

kx

� x
k

(r

i

k

)

2

�1

3

7775

ˆ⇠
k+1|k ,000

H
kw =

"
1 0

0 1

#

r

i

k

=

q
(�

i

kx

�x
k

)

2

+(�

i

ky

�y
k

)

2

The EKF equations:

At every time step k:

ˆ⇠
k+1|k = fk(ˆ⇠k|k , 000;�Sk ,�✓k)

P
k+1|k = Fk⇠PkFk⇠

T

+ F
k⌫VkFk⌫

T

At every time step k + 1 when a landmark is observed

ˆ⇠
k+1

=

ˆ⇠
k+1|k + Gk+1(zk+1 � hk(ˆ⇠k+1|k , 000;�i))

P
k+1

= P
k+1|k � Gk+1Hk⇠Pk+1|k

G
k+1

= P
k+1|kHk⇠

TS�1
k+1

S
k+1

= H
k⇠P
k+1|kHk⇠

T

+H
kwWk+1Hkw

T

4

T H E E K F E Q U AT I O N S

SUMMARY - EKF POSE PREDICTION: ODOMETRY+LANDMARKS+MAP

The Jacobians F
k⇠ and F

kv of f
k

(), that have to be evaluated in (⇠
k

=

ˆ⇠
k|k , ⌫k = 0), for the

linearization of the motion dynamics:

F
k⇠ =

2

664

1 0 ��S
k

sin(✓

k

+

�✓

k

2

)

0 1 �S

k

cos(✓

k

+

�✓

k

2

)

0 0 1

3

775

ˆ⇠
k|k ,000

F
k⌫ =

2

664

cos(✓

k

+

�✓

k

2

) ��S
k

sin(✓

k

+

�✓

k

2

)

sin(✓

k

+

�✓

k

2

) �S

k

cos(✓

k

+

�✓

k

2

)

0 1

3

775

ˆ⇠
k|k ,000

The Jacobians H
k⇠ and H

kw of h
k

(), that have to be evaluated in (⇠
k

=

ˆ⇠
k+1|k , ⌫k = 0), for

the linearization of the observation model (the �i
k

are parameters):

H
k⇠ =

2

6664

�
�

i

kx

� x
k

r

i

k

�
�

i

ky

� y
k

r

i

k

0

�

i

ky

� y
k

(r

i

k

)

2

�
�

i

kx

� x
k

(r

i

k

)

2

�1

3

7775

ˆ⇠
k+1|k ,000

H
kw =

"
1 0

0 1

#

r

i

k

=

q
(�

i

kx

�x
k

)

2

+(�

i

ky

�y
k

)

2

The EKF equations:

At every time step k:

ˆ⇠
k+1|k = fk(ˆ⇠k|k , 000;�Sk ,�✓k)

P
k+1|k = Fk⇠PkFk⇠

T

+ F
k⌫VkFk⌫

T

At every time step k + 1 when a landmark is observed

ˆ⇠
k+1

=

ˆ⇠
k+1|k + Gk+1(zk+1 � hk(ˆ⇠k+1|k , 000;�i))

P
k+1

= P
k+1|k � Gk+1Hk⇠Pk+1|k

G
k+1

= P
k+1|kHk⇠

TS�1
k+1

S
k+1

= H
k⇠P
k+1|kHk⇠

T

+H
kwWk+1Hkw

T

5

S TAT E E S T I M AT I O N
F O R A R O B O T M O V I N G O N A T R A C K

• Scenario: The robot does move, but its motion is constrained on a rectilinear
track (e.g., an automatic-driving train) → Motion happens along one single
dimension, x

• The robot issues velocity control actions, u(t), making the robot always
moving in one direction. Robot's velocity between control inputs is constant.

• Slipping/friction effects make the relation between velocity controls and
traveled distance (robot's position) noisy.

• Observable landmarks are present and can be used to correct position
prediction when observed (Prediction problem)

EKF FOR 1D POSITION PREDICTION WITH SPEED CONTROL (TRAIN)

Scenario: The robot does move, but its motion is constrained on a rectilinear track (e.g., an
automatic-driving train). Therefore motion happens along one single dimension, x .

The robot issues velocity control actions, u(t), making the robot always moving in one
direction. Robot’s velocity between control inputs is constant. Slippery/friction effects make
the relation between velocity controls and traveled distance (robot’s position) noisy.

Observable landmarks are present and can be used to correct position prediction when
observed (Prediction problem)

EKF FOR 1D POSITION PREDICTION WITH SPEED CONTROL (TRAIN)

Scenario: The robot does move, but its motion is constrained on a rectilinear track (e.g., an
automatic-driving train). Therefore motion happens along one single dimension, x .

The robot issues velocity control actions, u(t), making the robot always moving in one
direction. Robot’s velocity between control inputs is constant. Slippery/friction effects make
the relation between velocity controls and traveled distance (robot’s position) noisy.

Observable landmarks are present and can be used to correct position prediction when
observed (Prediction problem)

EKF FOR 1D POSITION PREDICTION WITH SPEED CONTROL (TRAIN)

Scenario: The robot does move, but its motion is constrained on a rectilinear track (e.g., an
automatic-driving train). Therefore motion happens along one single dimension, x .

The robot issues velocity control actions, u(t), making the robot always moving in one
direction. Robot’s velocity between control inputs is constant. Slippery/friction effects make
the relation between velocity controls and traveled distance (robot’s position) noisy.

Observable landmarks are present and can be used to correct position prediction when
observed (Prediction problem)

EKF FOR 1D POSITION PREDICTION WITH SPEED CONTROL (TRAIN)

Scenario: The robot does move, but its motion is constrained on a rectilinear track (e.g., an
automatic-driving train). Therefore motion happens along one single dimension, x .

The robot issues velocity control actions, u(t), making the robot always moving in one
direction. Robot’s velocity between control inputs is constant. Slippery/friction effects make
the relation between velocity controls and traveled distance (robot’s position) noisy.

Observable landmarks are present and can be used to correct position prediction when
observed (Prediction problem)

EKF FOR 1D POSITION PREDICTION WITH SPEED CONTROL (TRAIN)

Scenario: The robot does move, but its motion is constrained on a rectilinear track (e.g., an
automatic-driving train). Therefore motion happens along one single dimension, x .

The robot issues velocity control actions, u(t), making the robot always moving in one
direction. Robot’s velocity between control inputs is constant. Slippery/friction effects make
the relation between velocity controls and traveled distance (robot’s position) noisy.

Observable landmarks are present and can be used to correct position prediction when
observed (Prediction problem)

EKF FOR 1D POSITION PREDICTION WITH SPEED CONTROL (TRAIN)

Scenario: The robot does move, but its motion is constrained on a rectilinear track (e.g., an
automatic-driving train). Therefore motion happens along one single dimension, x .

The robot issues velocity control actions, u(t), making the robot always moving in one
direction. Robot’s velocity between control inputs is constant. Slippery/friction effects make
the relation between velocity controls and traveled distance (robot’s position) noisy.

Observable landmarks are present and can be used to correct position prediction when
observed (Prediction problem)

Landmark j
Landmark k

6

S TAT E E S T I M AT I O N
F O R A R O B O T M O V I N G O N A T R A C K

• State vector: pair (position - velocity) → 𝞷 = [x v]T

• Velocity inputs are given at discrete time intervals ∆T
(i.e., the time between step k and step k+1 is ∆T seconds

• Landmarks' observations are measures returning:
• The relative distance 𝝆x of the landmark from the train along the track:

zk+1= 𝝆x
• The identity i of the observed landmark, whose 1D position coordinate

𝝀ix can be retrieved from the map given as input
• The bearing is not needed in this case given that the robot is constrained

on moving along the track

EKF FOR 1D POSITION PREDICTION WITH SPEED CONTROL (TRAIN)

Scenario: The robot does move, but its motion is constrained on a rectilinear track (e.g., an
automatic-driving train). Therefore motion happens along one single dimension, x .

The robot issues velocity control actions, u(t), making the robot always moving in one
direction. Robot’s velocity between control inputs is constant. Slippery/friction effects make
the relation between velocity controls and traveled distance (robot’s position) noisy.

Observable landmarks are present and can be used to correct position prediction when
observed (Prediction problem)

EKF FOR 1D POSITION PREDICTION WITH SPEED CONTROL (TRAIN)

Scenario: The robot does move, but its motion is constrained on a rectilinear track (e.g., an
automatic-driving train). Therefore motion happens along one single dimension, x .

The robot issues velocity control actions, u(t), making the robot always moving in one
direction. Robot’s velocity between control inputs is constant. Slippery/friction effects make
the relation between velocity controls and traveled distance (robot’s position) noisy.

Observable landmarks are present and can be used to correct position prediction when
observed (Prediction problem)

EKF FOR 1D POSITION PREDICTION WITH SPEED CONTROL (TRAIN)

Scenario: The robot does move, but its motion is constrained on a rectilinear track (e.g., an
automatic-driving train). Therefore motion happens along one single dimension, x .

The robot issues velocity control actions, u(t), making the robot always moving in one
direction. Robot’s velocity between control inputs is constant. Slippery/friction effects make
the relation between velocity controls and traveled distance (robot’s position) noisy.

Observable landmarks are present and can be used to correct position prediction when
observed (Prediction problem)

EKF FOR 1D POSITION PREDICTION WITH SPEED CONTROL (TRAIN)

Scenario: The robot does move, but its motion is constrained on a rectilinear track (e.g., an
automatic-driving train). Therefore motion happens along one single dimension, x .

The robot issues velocity control actions, u(t), making the robot always moving in one
direction. Robot’s velocity between control inputs is constant. Slippery/friction effects make
the relation between velocity controls and traveled distance (robot’s position) noisy.

Observable landmarks are present and can be used to correct position prediction when
observed (Prediction problem)

EKF FOR 1D POSITION PREDICTION WITH SPEED CONTROL (TRAIN)

Scenario: The robot does move, but its motion is constrained on a rectilinear track (e.g., an
automatic-driving train). Therefore motion happens along one single dimension, x .

The robot issues velocity control actions, u(t), making the robot always moving in one
direction. Robot’s velocity between control inputs is constant. Slippery/friction effects make
the relation between velocity controls and traveled distance (robot’s position) noisy.

Observable landmarks are present and can be used to correct position prediction when
observed (Prediction problem)

EKF FOR 1D POSITION PREDICTION WITH SPEED CONTROL (TRAIN)

Scenario: The robot does move, but its motion is constrained on a rectilinear track (e.g., an
automatic-driving train). Therefore motion happens along one single dimension, x .

The robot issues velocity control actions, u(t), making the robot always moving in one
direction. Robot’s velocity between control inputs is constant. Slippery/friction effects make
the relation between velocity controls and traveled distance (robot’s position) noisy.

Observable landmarks are present and can be used to correct position prediction when
observed (Prediction problem)

Landmark j Landmark k
𝝆x

EKF FOR 1D POSITION PREDICTION WITH SPEED CONTROL (TRAIN)

The state-observation equations: the state vector ⇠ corresponds to the pair position-velocity:

⇠ =
⇥
x v

⇤
T

.
Velocity inputs are given at discrete time intervals �T (i.e., the time between step k and
step k + 1 is �T seconds).

Landmarks’ observations are measures returning the relative distance ⇢x of the landmark
(when detected) from the train along the track, z

k+1

= ⇢

x , and also return the identity i of
the observed landmark, whose 1D position coordinate �i

x

can be retrieved from a map given
as input:

⇠
k+1

=

"
x

k+1

v

k+1

#

=

"
x

k

+ v

k

�T

u

k

#

+

"
⌫

x

k

⌫

v

k

#

=

"
1 �T

0 0

#"
x

k

v

k

#

+

"
0

1

#

u

k

+

2

4
⌫

x

k

⌫

v

k

3

5
= A⇠

k

+Bu
k

+ ⌫
k

z
k+1

=

⇥
⇢

x

⇤
=

hp
(�

i

x

� x
k

)

2

i
+ w

x

k

= h
k

(x

k

, w

x

k

;�

i

x

) ⌘ h
k

(⇠
k

,w
k

;�

i

x

)

7

S TAT E E S T I M AT I O N
F O R A R O B O T M O V I N G O N A T R A C K

• State dynamics

EKF FOR 1D POSITION PREDICTION WITH SPEED CONTROL (TRAIN)

The state-observation equations: the state vector ⇠ corresponds to the pair position-velocity:

⇠ =
⇥
x v

⇤
T

.
Velocity inputs are given at discrete time intervals �T (i.e., the time between step k and
step k + 1 is �T seconds).

Landmarks’ observations are measures returning the relative distance ⇢x of the landmark
(when detected) from the train along the track, z

k+1

= ⇢

x , and also return the identity i of
the observed landmark, whose 1D position coordinate �i

x

can be retrieved from a map given
as input:

⇠
k+1

=

"
x

k+1

v

k+1

#

=

"
x

k

+ v

k

�T

u

k

#

+

"
⌫

x

k

⌫

v

k

#

=

"
1 �T

0 0

#"
x

k

v

k

#

+

"
0

1

#

u

k

+

2

4
⌫

x

k

⌫

v

k

3

5
= A⇠

k

+Bu
k

+ ⌫
k

z
k+1

=

⇥
⇢

x

⇤
=

hp
(�

i

x

� x
k

)

2

i
+ w

x

k

= h
k

(x

k

, w

x

k

;�

i

x

) ⌘ h
k

(⇠
k

,w
k

;�

i

x

)

• Observation prediction equation

MAP REPRESENTATIONS

Metric and/or topological representations of the environment

Grid-based, 2D-3D scan

Landmark-based

8

S O FA R , W E H AV E A M A P …

LANDMARK-BASED MAPS (FEATURE-BASED)

An occupancy grid can, in principle, be based on raw sensor measurements (e.g., from a
range sensor). An alternative approach is to extract features from the stream of raw
measurements. This amounts to a reduction in complexity, but requires a feature extractor

For instance, for range sensors, it is common to extract geometric features such as lines,
corners, or arcs, that can correspond respectively to walls, intersections, or trees.

For vision-based sensors, a number of techniques have been developed to automatically
extract a large number of features from images. Popular approaches include SIFT and SURF.

Extracted features might correspond to distinct objects in the physical world, such as door
posts, window stills, tree trunks, or corners of buildings ! In robotics, it is common to call
those physical objects landmarks or beacons (if they are explicitly used to guide navigation
towards a desired destination).

Landmarks can be naturally present in the considered environment (e.g., doors in indoors) or
can be placed ad hoc, precisely to favor robot navigation (e.g., the use of RFID or LED
beacons)

A landmark in the map is described by its measured features, its estimated location, and by a
signature (e.g., a distinctive color), that can be thought as its identity (we have mostly
assumed that the signature is read from the data, as it could be for a radio beacon)

A map can be populated by a relatively high number of point landmarks (e.g., 1,000), but
this is usually much smaller than the number of grid cells in an occupancy map (sparse vs.
dense mapping)

9

T Y P E S O F M A P S : F E AT U R E S

FEATURE-BASED MAPS: LINE MAPS

Line models, compact and often obtainable with closed forms

If n data points are returned from the sensor as Cartesian coordinates (x
i

, y

i

), the line that
minimizes the squared distances from all points can be calculated in closed form by solving

tan 2� =

�2
P
i

(x̄ � x
i

)(ȳ � y
i

)

P
i

h
(ȳ � y

i

)

2 � (x̄ � x
i

)

2

i

r = x̄ cos�+ ȳ sin�

where x̄ = (
P
i

x

i

)/n, ȳ = (

P
i

y

i

)/n, r is the normal distance of the line from the origin,
and � is the angle of the normal

When the data points are generated from
multiple linear structures no closed form
exists ! Split-and-merge algorithm that
recursively subdivides the point set into
subsets that can be more accurately
approximated by a line

GEOMETRIC APPROXIMATION USING THE FILTER

LANDMARK-BASED MAPS (FEATURE-BASED)

An occupancy grid can, in principle, be based on raw sensor measurements (e.g., from a
range sensor). An alternative approach is to extract features from the stream of raw
measurements. This amounts to a reduction in complexity, but requires a feature extractor

For instance, for range sensors, it is common to extract geometric features such as lines,
corners, or arcs, that can correspond respectively to walls, intersections, or trees.

For vision-based sensors, a number of techniques have been developed to automatically
extract a large number of features from images. Popular approaches include SIFT and SURF.

Extracted features might correspond to distinct objects in the physical world, such as door
posts, window stills, tree trunks, or corners of buildings ! In robotics, it is common to call
those physical objects landmarks or beacons (if they are explicitly used to guide navigation
towards a desired destination).

Landmarks can be naturally present in the considered environment (e.g., doors in indoors) or
can be placed ad hoc, precisely to favor robot navigation (e.g., the use of RFID or LED
beacons)

A landmark in the map is described by its measured features, its estimated location, and by a
signature (e.g., a distinctive color), that can be thought as its identity (we have mostly
assumed that the signature is read from the data, as it could be for a radio beacon)

A map can be populated by a relatively high number of point landmarks (e.g., 1,000), but
this is usually much smaller than the number of grid cells in an occupancy map (sparse vs.
dense mapping)

10

T Y P E S O F M A P S : F E AT U R E S

LANDMARK-BASED MAPS (FEATURE-BASED)

An occupancy grid can, in principle, be based on raw sensor measurements (e.g., from a
range sensor). An alternative approach is to extract features from the stream of raw
measurements. This amounts to a reduction in complexity, but requires a feature extractor

For instance, for range sensors, it is common to extract geometric features such as lines,
corners, or arcs, that can correspond respectively to walls, intersections, or trees.

For vision-based sensors, a number of techniques have been developed to automatically
extract a large number of features from images. Popular approaches include SIFT and SURF.

Extracted features might correspond to distinct objects in the physical world, such as door
posts, window stills, tree trunks, or corners of buildings ! In robotics, it is common to call
those physical objects landmarks or beacons (if they are explicitly used to guide navigation
towards a desired destination).

Landmarks can be naturally present in the considered environment (e.g., doors in indoors) or
can be placed ad hoc, precisely to favor robot navigation (e.g., the use of RFID or LED
beacons)

A landmark in the map is described by its measured features, its estimated location, and by a
signature (e.g., a distinctive color), that can be thought as its identity (we have mostly
assumed that the signature is read from the data, as it could be for a radio beacon)

A map can be populated by a relatively high number of point landmarks (e.g., 1,000), but
this is usually much smaller than the number of grid cells in an occupancy map (sparse vs.
dense mapping)

AUTOMATIC FEATURE EXTRACTION WITH VISION: SIFT, SURF, HARRIS

SIFT SURF Harris

FEATURE-BASED MAPS: LINE MAPS

Line models, compact and often obtainable with closed forms

If n data points are returned from the sensor as Cartesian coordinates (x
i

, y

i

), the line that
minimizes the squared distances from all points can be calculated in closed form by solving

tan 2� =

�2
P
i

(x̄ � x
i

)(ȳ � y
i

)

P
i

h
(ȳ � y

i

)

2 � (x̄ � x
i

)

2

i

r = x̄ cos�+ ȳ sin�

where x̄ = (
P
i

x

i

)/n, ȳ = (

P
i

y

i

)/n, r is the normal distance of the line from the origin,
and � is the angle of the normal

When the data points are generated from
multiple linear structures no closed form
exists ! Split-and-merge algorithm that
recursively subdivides the point set into
subsets that can be more accurately
approximated by a line

11

L I N E F E AT U R E M A P S

12

L A N D M A R K S

POINT LANDMARKS IN PRACTICE!

LANDMARK-BASED MAPS (FEATURE-BASED)

An occupancy grid can, in principle, be based on raw sensor measurements (e.g., from a
range sensor). An alternative approach is to extract features from the stream of raw
measurements. This amounts to a reduction in complexity, but requires a feature extractor

For instance, for range sensors, it is common to extract geometric features such as lines,
corners, or arcs, that can correspond respectively to walls, intersections, or trees.

For vision-based sensors, a number of techniques have been developed to automatically
extract a large number of features from images. Popular approaches include SIFT and SURF.

Extracted features might correspond to distinct objects in the physical world, such as door
posts, window stills, tree trunks, or corners of buildings ! In robotics, it is common to call
those physical objects landmarks or beacons (if they are explicitly used to guide navigation
towards a desired destination).

Landmarks can be naturally present in the considered environment (e.g., doors in indoors) or
can be placed ad hoc, precisely to favor robot navigation (e.g., the use of RFID or LED
beacons)

A landmark in the map is described by its measured features, its estimated location, and by a
signature (e.g., a distinctive color), that can be thought as its identity (we have mostly
assumed that the signature is read from the data, as it could be for a radio beacon)

A map can be populated by a relatively high number of point landmarks (e.g., 1,000), but
this is usually much smaller than the number of grid cells in an occupancy map (sparse vs.
dense mapping)

BUILDING A MAP

What if the map is not given?
There are M landmarks in the environment but the robot does know neither

the number M nor the position of the landmarks

+
Use the EKF (or, more generally, an estimator) to create the map:

the robot moves around and makes landmark observations
! from the observations the position of the landmarks is recursively estimated

13

W H AT I F N O M A P I S AVA I L A B L E ?BUILDING A MAP

What if the map is not given?
There are M landmarks in the environment but the robot does know neither

the number M nor the position of the landmarks

+
Use the EKF (or, more generally, an estimator) to create the map:

the robot moves around and makes landmark observations
! from the observations the position of the landmarks is recursively estimated

14

R O A D M A P T O S L A M
CREATING A MAP FOR SLAM

The (final) goal is to build a map while at the same time performing pose estimation:
Simultaneous Localization and Mapping (SLAM)

Road map:

1 Previous results: We know how to make localization estimation in the presence of a map
using KF/EKF

2 Let’s now first learn how to make a map assuming perfect pose knowledge for the mobile
robot, meaning that ⇠ =

⇥
x

k

y

k

✓

k

⇤
T is known exactly any step k:

b⇠
k

⌘ ⇠
k

, P
k

= 0

0

0

3 Finally, combine the results from 1. and 2. to deal with the general case in which both the

map of the environment and the pose of the robot are unknown ! SLAM

CREATING A MAP FOR SLAM

The (final) goal is to build a map while at the same time performing pose estimation:
Simultaneous Localization and Mapping (SLAM)

Road map:

1 Previous results: We know how to make localization estimation in the presence of a map
using KF/EKF

2 Let’s now first learn how to make a map assuming perfect pose knowledge for the mobile
robot, meaning that ⇠ =

⇥
x

k

y

k

✓

k

⇤
T is known exactly any step k:

b⇠
k

⌘ ⇠
k

, P
k

= 0

0

0

3 Finally, combine the results from 1. and 2. to deal with the general case in which both the

map of the environment and the pose of the robot are unknown ! SLAM

CREATING A MAP FOR SLAM

The (final) goal is to build a map while at the same time performing pose estimation:
Simultaneous Localization and Mapping (SLAM)

Road map:

1 Previous results: We know how to make localization estimation in the presence of a map
using KF/EKF

2 Let’s now first learn how to make a map assuming perfect pose knowledge for the mobile
robot, meaning that ⇠ =

⇥
x

k

y

k

✓

k

⇤
T is known exactly any step k:

b⇠
k

⌘ ⇠
k

, P
k

= 0

0

0

3 Finally, combine the results from 1. and 2. to deal with the general case in which both the

map of the environment and the pose of the robot are unknown ! SLAM

SIMULTANEOUS LOCALIZATION AND MAPPING

SLAM is a chicken-or-egg problem:

A map is needed for localizing a robot
A good pose estimate is needed to build a map

It’s a fundamental but hard problem, necessary to achieve robot autonomy

Applications examples are:

1 Indoor: vacuum cleaner, hospital logistics
2 Air: surveillance, forest monitoring
3 Underwater: sea-life and coastal monitoring
4 Underground: mine exploration and mapping
5 Space: terrain mapping for localization 15

S I M U LTA N E O U S L O C A L I Z AT I O N A N D M A P P I N G

16

LOCALIZATION AND MAPPING SCENARIOS (1)

Proprioceptive
information

Ex
te
ro
ce
pt
iv
e

se
ns
in
g

1. Action/prediction update: Proprioceptive sensing

2. Perception/measurement update: Exteroceptive sensing

Proprioceptive
information

Pose
Prediction

(e.g., odometry)

• Robot Localization scenario

• Odometry measures for issued velocity controls

• Pose prediction errors grow unbounded

• EKF: linearization of the motion process equations

State = Robot pose

17

LOCALIZATION AND MAPPING SCENARIOS (2)

Proprioceptive
information

Ex
te
ro
ce
pt
iv
e

se
ns
in
g

1. Action/prediction update: Proprioceptive sensing

2. Perception/measurement update: Exteroceptive sensing

• Robot Localization scenario
• Odometry measures for issued

velocity controls
• Landmark map in input
• Noisy landmark observations by

range and bearing sensors
• Pose prediction errors depend on

observations
• EKF: linearization of the motion

and observation equations

Proprioceptive
information

Pose
Prediction

Pose Update
(estimation)

Matching
(innovation)

Observation

Ex
te

ro
ce

pt
ive

se

ns
in

g

(e.g., odometry)

Predicted
observation

vs. pose
Map

(landmarks)

State = Robot pose

18

Exact
Robot Pose

Landmark Pose
Prediction

Landmark Update
(estimation)

Matching
(innovation)

Landmark
Observation

Ex
te

ro
ce

pt
ive

se

ns
in

g

Predicted
observation
vs. expected

landmark pose

Map
(landmarks)

• Map-building scenario
• Robot pose is known exactly
• No landmark map in input, but

known number of landmarks
• Landmark pose prediction errors

depend on noisy observations from
range and bearing sensors

• EKF: no motion error, linearization of
the landmark observation equations

Build map

Read map

LOCALIZATION AND MAPPING SCENARIOS (3)

Where(?) the M landmarks?

State = Coordinates of map landmarks

19

Exact
Robot Pose

Landmark Pose
Prediction

Landmark Update
(estimation)

Matching
(innovation)

Landmark
Observation

Ex
te

ro
ce

pt
ive

se

ns
in

g

Predicted
observation
vs. expected

landmark pose

Map
(landmarks)

Where(?) the M(?) landmarks?

• Map-building scenario
• Robot pose is known exactly
• No landmark map in input,

unknown number of landmarks
• Landmark pose prediction errors

depend on noisy observations from
range and bearing sensors

• EKF: no motion error, linearization of
the landmark observation equations

Build map

Read map

LOCALIZATION AND MAPPING SCENARIOS (4)

State (variable size) = Coordinates of map landmarks

20

LOCALIZATION AND MAPPING SCENARIOS (5)

Proprioceptive
information

Ex
te
ro
ce
pt
iv
e

se
ns
in
g

1. Action/prediction update: Proprioceptive sensing

2. Perception/measurement update: Exteroceptive sensing
• Mapping & Localization scenario
• Estimation of robot pose
• No landmark map in input
• Noisy landmark observations by

range and bearing sensors
• Pose prediction errors depend on

landmark and odometry measures
• EKF: linearization of the motion

and observation equations

Proprioceptive
information

State
Prediction

State Update
(estimation)

Matching
(innovation)

Observation

Ex
te

ro
ce

pt
ive

se

ns
in

g

Predicted
observation
vs. state

Map
(landmarks)

Build / update landmark map

Where(?) the M(?) landmarks?

State (variable size) = Robot pose + Coordinates of map landmarks

21

E S T I M AT I N G L A N D M A R K P O S I T I O N S

• Scenario: The robot needs to move (which mobility model?) in the
environment in order to observe landmarks using its sensors (affected by
noise) and recursively adjust the estimated position of the observed
landmarks, in order to eventually build a (usable) landmark map

• Assumption (for the time being):
• While moving, the pose of the robot in the environment is assumed to be

precisely known → robot's coordinates [xk yk 𝜃k] are parameters

• The number, M, of the landmarks to map is known

ESTIMATING LANDMARKS POSITIONS

Scenario:

The robot needs to move (which mobility model?) in the environment in order to observe
landmarks using its sensors (affected by noise) and recursively adjust the estimated position
of the observed landmarks, in order to build a (usable) map with the landmarks.

While moving, the pose of the robot in the environment is assumed to be precisely known
! the robot’s coordinates

⇥
x

k

y

k

✓

k

⇤
T can be considered as parameters

The state vector ⇠ corresponds to the unknown locations of the M landmarks that are
known to be in the environment (as a first step M is known . . .):

⇠ =
⇥
�

1

x

�

1

y

�

2

x

�

2

y

. . . �

M

x

�

M

y

⇤
T

! ⇠ has (max) dimensions: 2M ⇥ 1, P has (max) dimensions: 2M ⇥ 2M

Goal: recursively estimate the system state ⇠ through the EKF, which means building over
time (possibly) better and better estimates of landmarks’ positions as the result of robot
motion and sensing actions

Goal: Recursively estimate the state 𝞷 → Build the landmark map with good
accuracy → Output good estimates of landmark positions

22

S TAT E V E C T O R A N D C O VA R I A N C E M AT R I XSTATE VECTOR AND COVARIANCE MATRIX

⇠ =

2

6666666666666666664

�

1

x

�

1

y

�

2

x

�

2

y

. . .

. . .

�

M

x

�

M

y

3

7777777777777777775

P
2M⇥2M =

2

66666666666664

�

�

1

x

�

1

x

�

�

1

x

�

1

y

�

�

1

x

�

2

x

�

�

1

x

�

2

y

. . . �

�

1

x

�

M

x

�

�

1

x

�

M

y

�

�

1

y

�

1

x

�

�

1

y

�

1

y

�

�

1

y

�

2

x

�

�

1

y

�

2

y

. . . �

�

1

y

�

M

x

�

�

1

y

�

M

y

�

�

2

x

�

1

x

�

�

2

x

�

1

y

�

�

2

x

�

2

x

�

�

2

x

�

2

y

. . . �

�

2

x

�

M

x

�

�

2

x

�

M

y

�

�

2

y

�

1

x

�

�

2

y

�

1

y

�

�

2

y

�

2

x

�

�

2

y

�

2

y

. . . �

�

2

y

�

M

x

�

�

2

y

�

M

y

. .

�

�

M

x

�

1

x

�

�

M

x

�

1

y

�

�

M

x

�

2

x

�

�

M

x

�

2

y

. . . �

�

M

x

�

M

x

�

�

M

x

�

M

y

�

�

M

y

�

1

x

�

�

M

y

�

1

y

�

�

M

y

�

2

x

�

�

M

y

�

2

y

. . . �

�

M

y

�

M

x

�

�

M

y

�

M

y

3

77777777777775

In a more compact way, grouping individual covariance 2⇥ 2 sub-matrices:

⌃�i�k =

2

4
�

�

i

x

�

k

x

�

�

i

x

�

k

y

�

�

i

y

�

k

x

�

�

i

y

�

k

y

3

5

⇠ =

2

666664

�1

�2

. . .

�M

3

777775
P =

2

666664

⌃�1�1 ⌃�1�2 . . . ⌃�1�M

⌃�2�1 ⌃�2�2 . . . ⌃�2�M

.

⌃�M�1 ⌃�M�2 . . . ⌃�M�M

3

777775

STATE VECTOR AND COVARIANCE MATRIX

⇠ =

2

6666666666666666664

�

1

x

�

1

y

�

2

x

�

2

y

. . .

. . .

�

M

x

�

M

y

3

7777777777777777775

P
2M⇥2M =

2

66666666666664

�

�

1

x

�

1

x

�

�

1

x

�

1

y

�

�

1

x

�

2

x

�

�

1

x

�

2

y

. . . �

�

1

x

�

M

x

�

�

1

x

�

M

y

�

�

1

y

�

1

x

�

�

1

y

�

1

y

�

�

1

y

�

2

x

�

�

1

y

�

2

y

. . . �

�

1

y

�

M

x

�

�

1

y

�

M

y

�

�

2

x

�

1

x

�

�

2

x

�

1

y

�

�

2

x

�

2

x

�

�

2

x

�

2

y

. . . �

�

2

x

�

M

x

�

�

2

x

�

M

y

�

�

2

y

�

1

x

�

�

2

y

�

1

y

�

�

2

y

�

2

x

�

�

2

y

�

2

y

. . . �

�

2

y

�

M

x

�

�

2

y

�

M

y

. .

�

�

M

x

�

1

x

�

�

M

x

�

1

y

�

�

M

x

�

2

x

�

�

M

x

�

2

y

. . . �

�

M

x

�

M

x

�

�

M

x

�

M

y

�

�

M

y

�

1

x

�

�

M

y

�

1

y

�

�

M

y

�

2

x

�

�

M

y

�

2

y

. . . �

�

M

y

�

M

x

�

�

M

y

�

M

y

3

77777777777775

In a more compact way, grouping individual covariance 2⇥ 2 sub-matrices:

⌃�i�k =

2

4
�

�

i

x

�

k

x

�

�

i

x

�

k

y

�

�

i

y

�

k

x

�

�

i

y

�

k

y

3

5

⇠ =

2

666664

�1

�2

. . .

�M

3

777775
P =

2

666664

⌃�1�1 ⌃�1�2 . . . ⌃�1�M

⌃�2�1 ⌃�2�2 . . . ⌃�2�M

.

⌃�M�1 ⌃�M�2 . . . ⌃�M�M

3

777775

23

S Y S T E M P R O C E S S E Q U AT I O N S
SYSTEM EQUATIONS

Process equations (motion dynamics): landmarks do not move, therefore system’s dynamics
is the same as when the KF is used to iteratively refine the estimate of a measured
quantity/event which is stationary and there is no process error:

⇠
k+1

= ⇠
k

, V = 000

! the prediction part of the filter equations is:

ˆ⇠
k+1|k = ˆ⇠k|k , P

k+1|k = Pk|k

Observation model (measurements): as before, the robot uses its on-board sensors to
measure the relative range ⇢

i and bearing �

i , with respect to landmark with identity i when
this falls in its sensing range:

z
k+1

=

⇥
⇢

i

�

i

⇤
T

.

z
k+1

is (possibly) corrupted by white Gaussian noise w
k

. The observation equation is as
before, but now the state variables are the �s, while robot’s pose

⇥
x

k

y

k

✓

k

⇤
T is a parameter

vector:

z
k+1

= `(�
k

,w
k

; x

k

, y

k

, ✓

k

) =

2

4

q
(�

i

kx

� x
k

)

2

+ (�

i

ky

� y
k

)

2

arctan

⇣
(�

i

ky

� y
k

)/(�

i

kx

� x
k

)

⌘
� ✓

k

3

5
+

"
w

⇢

k

w

�

k

#

As before, measurement noises in range and bearing are assumed uncorrelated and Gaussian:

w =

"
w
⇢

w
�

#
T

⇠ N(0,W), W =

"
�

2

⇢

0

0 �

2

�

#

BUILDING A MAP

What if the map is not given?
There are M landmarks in the environment but the robot does know neither

the number M nor the position of the landmarks

+
Use the EKF (or, more generally, an estimator) to create the map:

the robot moves around and makes landmark observations
! from the observations the position of the landmarks is recursively estimated

SYSTEM EQUATIONS

Process equations (motion dynamics): landmarks do not move, therefore system’s dynamics
is the same as when the KF is used to iteratively refine the estimate of a measured
quantity/event which is stationary and there is no process error:

⇠
k+1

= ⇠
k

, V = 000

! the prediction part of the filter equations is:

ˆ⇠
k+1|k = ˆ⇠k|k , P

k+1|k = Pk|k

Observation model (measurements): as before, the robot uses its on-board sensors to
measure the relative range ⇢

i and bearing �

i , with respect to landmark with identity i when
this falls in its sensing range:

z
k+1

=

⇥
⇢

i

�

i

⇤
T

.

z
k+1

is (possibly) corrupted by white Gaussian noise w
k

. The observation equation is as
before, but now the state variables are the �s, while robot’s pose

⇥
x

k

y

k

✓

k

⇤
T is a parameter

vector:

z
k+1

= `(�
k

,w
k

; x

k

, y

k

, ✓

k

) =

2

4

q
(�

i

kx

� x
k

)

2

+ (�

i

ky

� y
k

)

2

arctan

⇣
(�

i

ky

� y
k

)/(�

i

kx

� x
k

)

⌘
� ✓

k

3

5
+

"
w

⇢

k

w

�

k

#

As before, measurement noises in range and bearing are assumed uncorrelated and Gaussian:

w =

"
w
⇢

w
�

#
T

⇠ N(0,W), W =

"
�

2

⇢

0

0 �

2

�

#

24

O B S E R VAT I O N P R O C E S S E Q U AT I O N S

SYSTEM EQUATIONS

Process equations (motion dynamics): landmarks do not move, therefore system’s dynamics
is the same as when the KF is used to iteratively refine the estimate of a measured
quantity/event which is stationary and there is no process error:

⇠
k+1

= ⇠
k

, V = 000

! the prediction part of the filter equations is:

ˆ⇠
k+1|k = ˆ⇠k|k , P

k+1|k = Pk|k

Observation model (measurements): as before, the robot uses its on-board sensors to
measure the relative range ⇢

i and bearing �

i , with respect to landmark with identity i when
this falls in its sensing range:

z
k+1

=

⇥
⇢

i

�

i

⇤
T

.

z
k+1

is (possibly) corrupted by white Gaussian noise w
k

. The observation equation is as
before, but now the state variables are the �s, while robot’s pose

⇥
x

k

y

k

✓

k

⇤
T is a parameter

vector:

z
k+1

= `(�
k

,w
k

; x

k

, y

k

, ✓

k

) =

2

4

q
(�

i

kx

� x
k

)

2

+ (�

i

ky

� y
k

)

2

arctan

⇣
(�

i

ky

� y
k

)/(�

i

kx

� x
k

)

⌘
� ✓

k

3

5
+

"
w

⇢

k

w

�

k

#

As before, measurement noises in range and bearing are assumed uncorrelated and Gaussian:

w =

"
w
⇢

w
�

#
T

⇠ N(0,W), W =

"
�

2

⇢

0

0 �

2

�

#

Non linear equations: Linearization is required for an EKF

25

J A C O B I A N S F O R L I N E A R I Z AT I O NLINEARIZATION OF THE OBSERVATION MODEL

As before, the observation equations are non linear, and require a linearization in order to be
used in the EKF ! computation of the Jacobian
The Jacobian of the non-linear function `

k

is computed at the mean of the Gaussian
measurement noise (w = 000) and at the current state estimate ˆ⇠

k+1|k (which corresponds to
the estimated mean of the Gaussian distribution of the landmarks’ positions):
The vector function `, with variables �s and w , is written in its two components,
`
k

=

⇥
h

k⇢

h

k�

⇤
T , where �i

k

is the position estimate of the currently observed landmark:

h

k⇢

=

q
(�

i

kx

� x
k

)

2

+ (�

i

ky

� y
k

)

2

+ w

⇢

k

h

k�

= arctan

⇣
(�

i

ky

� y
k

)/(�

i

kx

� x
k

)

⌘
� ✓

k

+ w

�

k

The Jacobian matrix of `
k

is therefore:

L
k

(�1, . . . ,�M,w⇢
k

, w

�

k

)=

2

66664

@h

k⇢

@�

1

kx

@h

k⇢

@�

1

ky

@h

k⇢

@�

2

kx

@h

k⇢

@�

2

ky

. . .

@h

k⇢

@�

M

kx

@h

k⇢

@�

M

ky

@h

k⇢

@w

⇢

k

@h

k⇢

@w

�

k

@h

k�

@�

1

kx

@h

k�

@�

1

ky

@h

k�

@�

2

kx

@h

k�

@�

2

ky

. . .

@h

k�

@�

M

kx

@h

k�

@�

M

ky

@h

k�

@w

⇢

k

@h

k�

@w

�

k

3

77775
=

⇥
L
k⇠ Lkw

⇤

L
k⇠ =

2

6664

0 0 . . .

�

i

kx

� x
k

r

i

k

�

i

ky

� y
k

r

i

k

. . . 0 0

0 0 . . . �
�

i

ky

� y
k

(r

i

k

)

2

�

i

kx

� x
k

(r

i

k

)

2

. . . 0 0

3

7775

ˆ⇠
k+1|k ,w=0

L
kw =

"
1 0

0 1

#

r

i

k

is the predicted distance of landmark i from robot position: r i
k

=

q
(�

i

kx

� x
k

)

2

+ (�

i

ky

� y
k

)

2

LINEARIZATION OF THE OBSERVATION MODEL

As before, the observation equations are non linear, and require a linearization in order to be
used in the EKF ! computation of the Jacobian
The Jacobian of the non-linear function `

k

is computed at the mean of the Gaussian
measurement noise (w = 000) and at the current state estimate ˆ⇠

k+1|k (which corresponds to
the estimated mean of the Gaussian distribution of the landmarks’ positions):
The vector function `, with variables �s and w , is written in its two components,
`
k

=

⇥
h

k⇢

h

k�

⇤
T , where �i

k

is the position estimate of the currently observed landmark:

h

k⇢

=

q
(�

i

kx

� x
k

)

2

+ (�

i

ky

� y
k

)

2

+ w

⇢

k

h

k�

= arctan

⇣
(�

i

ky

� y
k

)/(�

i

kx

� x
k

)

⌘
� ✓

k

+ w

�

k

The Jacobian matrix of `
k

is therefore:

L
k

(�1, . . . ,�M,w⇢
k

, w

�

k

)=

2

66664

@h

k⇢

@�

1

kx

@h

k⇢

@�

1

ky

@h

k⇢

@�

2

kx

@h

k⇢

@�

2

ky

. . .

@h

k⇢

@�

M

kx

@h

k⇢

@�

M

ky

@h

k⇢

@w

⇢

k

@h

k⇢

@w

�

k

@h

k�

@�

1

kx

@h

k�

@�

1

ky

@h

k�

@�

2

kx

@h

k�

@�

2

ky

. . .

@h

k�

@�

M

kx

@h

k�

@�

M

ky

@h

k�

@w

⇢

k

@h

k�

@w

�

k

3

77775
=

⇥
L
k⇠ Lkw

⇤

L
k⇠ =

2

6664

0 0 . . .

�

i

kx

� x
k

r

i

k

�

i

ky

� y
k

r

i

k

. . . 0 0

0 0 . . . �
�

i

ky

� y
k

(r

i

k

)

2

�

i

kx

� x
k

(r

i

k

)

2

. . . 0 0

3

7775

ˆ⇠
k+1|k ,w=0

L
kw =

"
1 0

0 1

#

r

i

k

is the predicted distance of landmark i from robot position: r i
k

=

q
(�

i

kx

� x
k

)

2

+ (�

i

ky

� y
k

)

2

FILTER EQUATIONS

Prediction update

(at every time step k)

(
ˆ⇠
k+1|k = ˆ⇠k (State prediction)

P
k+1|k = Pk (Covariance prediction)

Measurement correction

(every time a landmark i
is observed)

8
>>>>><

>>>>>:

ˆ⇠
k+1

=

ˆ⇠
k+1|k + Gk+1(zk+1 � `k(ˆ�k+1|k , 000; xk , yk , ✓k)) (State update)

P
k+1

= P
k+1|k � Gk+1Lk⇠Pk+1|k (Covariance update)

G
k+1

= P
k+1|kLk⇠

TS�1
k+1

(Kalman gain)

S
k+1

= L
k⇠P
k+1|kLk⇠

T

+ L
kwWk+1Lkw

T

26

F I LT E R E Q U AT I O N S

FILTER EQUATIONS

The innovation term (✏
k+1

is a 2⇥ 1 matrix):

✏
k+1

= z
k+1

� `
k

(

ˆ�
k+1|k , 000; ⇠R

k

) =

"
⇢

i

k+1

�

i

k+1

#

�

2

4

q
(

ˆ

�

i

kx

� x
k

)

2

+ (

ˆ

�

i

ky

� y
k

)

2

arctan

⇣
(

ˆ

�

i

ky

� y
k

)/(

ˆ

�

i

kx

� x
k

)

⌘
� ✓

k

3

5

The state update (G
k+1

is a 2M ⇥ 2 matrix):

ˆ⇠
k+1

=

h
ˆ

�

1

kx

ˆ

�

1

ky

.

ˆ

�

M

kx

ˆ

�

M

ky

i
T

+G
k+1

2

4
⇢

i

k+1

�
q
(

ˆ

�

i

kx

� x
k

)

2

+ (

ˆ

�

i

ky

� y
k

)

2

�

i

k+1

� arctan
⇣
(

ˆ

�

i

ky

� y
k

)/(

ˆ

�

i

kx

� x
k

)

⌘
� ✓

k

3

5

The covariance matrix:

P
k+1

= P
k+1|k � Gk+1

2

6664

0 0 . . .

ˆ

�

i

kx

� x
k

r̂

i

k

ˆ

�

i

ky

� y
k

r̂

i

k

. . . 0 0

0 0 . . .�
ˆ

�

i

ky

� y
k

(r̂

i

k

)

2

ˆ

�

i

kx

� x
k

(r̂

i

k

)

2

. . . 0 0

3

7775

2

6666664

ˆ

⌃�1�1
ˆ

⌃�1�2 . . .
ˆ

⌃�1�M

ˆ

⌃�2�1
ˆ

⌃�2�2 . . .
ˆ

⌃�2�M

.

ˆ

⌃�M�1
ˆ

⌃�M�2 . . .
ˆ

⌃�M�M

3

7777775
ˆ�
k+1|k

27

F I LT E R E Q U AT I O N S

ILLUSTRATION EXAMPLE

At step k + 1 the robot detects landmark 2 at a relative range of 2.5m and a relative angle
of 130o , that is, z

k+1

=

⇥
2.5 130

⇤
T ;

Robot’s known pose is ⇠
k+1

=

⇥
3 1 0

⇤
T

The true (unknown) position of landmark 2 is �2 =
⇥
3 3

⇤
T

Based on current filter status, the predicted position of landmark 1 is: ˆ�2
k

=

⇥
1.55 2.65

⇤
T

The covariance sub-matrix quantifying the estimated error in landmark position at step k is:

⌃�2�2 =

2

4
�

�

2

x

�

2

x

�

�

2

x

�

2

y

�

�

2

y

�

2

x

�

�

2

y

�

2

y

3

5
=

2

4
0.5 0

0 1.8

3

5

28

E X A M P L E

ILLUSTRATION EXAMPLE

At step k + 1 the robot detects landmark 2 at a relative range of 2.5m and a relative angle
of 130o , that is, z

k+1

=

⇥
2.5 130

⇤
T ;

Robot’s known pose is ⇠
k+1

=

⇥
3 1 0

⇤
T

The true (unknown) position of landmark 2 is �2 =
⇥
3 3

⇤
T

Based on current filter status, the predicted position of landmark 1 is: ˆ�2
k

=

⇥
1.55 2.65

⇤
T

The covariance sub-matrix quantifying the estimated error in landmark position at step k is:

⌃�2�2 =

2

4
�

�

2

x

�

2

x

�

�

2

x

�

2

y

�

�

2

y

�

2

x

�

�

2

y

�

2

y

3

5
=

2

4
0.5 0

0 1.8

3

5

29

E X A M P L E

SIMULATION RESULTS

n = 20 landmarks are randomly deployed in a squared environment of 20⇥20 m2

�

⇢

= 0.1 m, �
�

= 1o

Total of 1000 steps (about 40–70 measures per landmark)

Axes of the 5� confidence ellipses are shown at each landmark point

30

S I M U L AT I O N R E S U LT S

SIMULATION RESULTS

The resulting covariance matrix (40⇥ 40)

Block diagonal structure: each set of 4 points represent the values of the covariance of the
position of a map landmark: ⌃�n�n

All the non-diagonal entries are zero: positions of any pair of landmarks n and j are
uncorrelated, which is expected since observing landmark n provides no new information
about landmark j 6= n

31

S I M U L AT I O N R E S U LT S

