16-311-O INTRODUCTION TO ROBOTICS FALL'17

 LECTURE 22:

 LECTURE 22: MAP BUILDING (UNKNOWN \# OF LANDMARKS) EKF SLAM

INSTRUCTOR:
GIANNI A. DI CARO

PROBLEM: WHAT IF THE NUMBER OF LANDMARKS IS UKNOWN?

Where(?) the $M(?)$ landmarks?
State vector $\boldsymbol{\xi}$ of the EKF: (Coordinates of the M landmarks)

Usually, both the locations and the number M of the landmarks existing in the environment are not known a priori

The state vector $\boldsymbol{\xi}_{k}$ must be incrementally expanded by two new coordinate components [$\lambda_{x}^{i} \lambda^{i}{ }_{y}$] each time a new landmark λ^{i} is observed

Formally, the expansion of the state vector $\boldsymbol{\xi}_{\mathrm{k}}$ amounts to the following process dynamics (before process dynamics was stationary), implemented through the use of the auxiliary (non linear!) function $\boldsymbol{q}($):

$$
\boldsymbol{\xi}_{k+1}^{*}=\boldsymbol{q}\left(\boldsymbol{\xi}_{k}, z_{k+1} ; x_{k}, y_{k}, \theta_{k}\right)=\left[\begin{array}{c}
\boldsymbol{\xi}_{k} \\
\boldsymbol{g}\left(x_{k}, y_{k}, \theta_{k}, z_{k+1}\right)
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{\xi}_{k} \\
x_{k}+\rho_{k} \cos \left(\theta_{k}+\beta_{k}\right) \\
y_{k}+\rho_{k} \sin \left(\theta_{k}+\beta_{k}\right)
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{\xi}_{k} \\
\lambda_{k x}^{i} \\
\lambda_{k y}^{i}
\end{array}\right]
$$

If $\boldsymbol{\xi}_{k}$ is $2 n \times 1, n<M \Rightarrow \boldsymbol{\xi}_{k+1}^{*}$ is $2(n+1) \times 1$.
The order of the landmarks in the state vector depends on the order of observation

THE STATE EXPANSION FUNCTION

$$
\boldsymbol{\xi}_{k+1}^{*}=\boldsymbol{q}\left(\boldsymbol{\xi}_{k}, z_{k+1} ; x_{k}, y_{k}, \theta_{k}\right)=\left[\begin{array}{c}
\boldsymbol{\xi}_{k} \\
\boldsymbol{g}\left(x_{k}, y_{k}, \theta_{k}, z_{k+1}\right)
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{\xi}_{k} \\
x_{k}+\rho_{k} \cos \left(\theta_{k}+\beta_{k}\right) \\
y_{k}+\rho_{k} \sin \left(\theta_{k}+\beta_{k}\right)
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{\xi}_{k} \\
\lambda_{k x}^{i} \\
\lambda_{k y}^{i}
\end{array}\right]
$$

- The vector function $\mathbf{g}(x, y, \theta, \mathbf{z})$, which is the inverse of the observation function $\ell($), gives the measured coordinates (in the world frame) of the observed landmark.
- Inputs: known vehicle pose $[\mathrm{x} \text { y } \theta]^{T}$, sensor observation $\mathbf{z}=[\rho \beta]^{T}$ at time step k.
- $g()$ gets the local robot measure and outputs the world coordinates of the observed landmark:

$$
\boldsymbol{g}(x, y, \theta, z)=\left[\begin{array}{l}
x+\rho \cos (\theta+\beta) \\
y+\rho \sin (\theta+\beta)
\end{array}\right]
$$

EXPANDING BOTH STATE AND COVARIANCE MATRIX

- After the new landmark i has been observed, at step $k+1$, the expanded state vector:

$$
\boldsymbol{\xi}_{k+1}^{*} \leftarrow\left[\begin{array}{ll}
\boldsymbol{\xi}_{k} & \lambda^{i}
\end{array}\right]^{T}=\left[\begin{array}{llllllllll}
\lambda_{x}^{t} & \lambda_{y}^{t} & \lambda_{x}^{s} & \lambda_{y}^{s} & \lambda_{x}^{j} & \lambda_{y}^{j} & \ldots & \ldots & \lambda_{x}^{i} & \lambda_{y}^{i}
\end{array}\right]^{T}
$$

- Without losing generality, let's assume that the landmarks are ordered incrementally in the state vector \rightarrow landmark i is the i-th discovered landmark:

$$
\boldsymbol{\xi}_{k+1}^{*} \leftarrow\left[\begin{array}{lll}
\boldsymbol{\xi}_{k} & \boldsymbol{\lambda}^{i}
\end{array}\right]^{T}=\left[\begin{array}{llllllllll}
\lambda_{x}^{1} & \lambda_{y}^{1} & \lambda_{x}^{2} & \lambda_{y}^{2} & \lambda_{x}^{3} & \lambda_{y}^{3} & \ldots & \ldots & \lambda_{x}^{i} & \lambda_{y}^{i}
\end{array}\right]^{T}
$$

- The new expanded covariance matrix, of dimension $2 i \times 2 i$:

$$
\boldsymbol{P}_{k+1 \mid k}^{*}=\left[\begin{array}{llllllll}
\sigma_{\lambda_{x}^{1} \lambda_{x}^{1}} & \sigma_{\lambda_{x}^{1} \lambda_{y}^{1}} & \sigma_{\lambda_{x}^{1} \lambda_{x}^{2}} & \sigma_{\lambda_{x}^{1} \lambda_{y}^{2}} & \ldots & \sigma_{\lambda_{x}^{1} \lambda_{x}^{i}} & \sigma_{\lambda_{x}^{1} \lambda_{y}^{i}} \\
\sigma_{\lambda_{y}^{1} \lambda_{x}^{1}} & \sigma_{\lambda_{y}^{1} \lambda_{y}^{1}} & \sigma_{\lambda_{y}^{1} \lambda_{x}^{2}} & \sigma_{\lambda_{\lambda}^{1} \lambda_{y}^{2}} & \ldots & \sigma_{\lambda_{y}^{1} \lambda_{x}^{i}} & \sigma_{\lambda_{y}^{1} \lambda_{y}^{i}} \\
\sigma_{\lambda_{x}^{2} \lambda_{x}^{1}} & \sigma_{\lambda_{x}^{2} \lambda_{y}^{1}} & \sigma_{\lambda_{x}^{2} \lambda_{x}^{2}} & \sigma_{\lambda_{x}^{2} \lambda_{y}^{2}} & \ldots & \sigma_{\lambda_{x}^{2} \lambda_{x}^{i}} & \sigma_{\lambda_{x}^{2} \lambda_{y}^{i}} \\
\sigma_{\lambda_{y}^{2} \lambda_{x}^{1}} & \sigma_{\lambda_{y}^{2} \lambda_{y}^{1}} & \sigma_{\lambda_{y}^{2} \lambda_{x}^{2}} & \sigma_{\lambda_{y}^{2} \lambda_{y}^{2}} & \ldots & \sigma_{\lambda_{y}^{2} \lambda_{x}^{i}} & \sigma_{\lambda_{y}^{2} \lambda_{y}^{i}} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\sigma_{\lambda_{x}^{i} \lambda_{x}^{1}} & \sigma_{\lambda_{x}^{i} \lambda_{y}^{1}} & \sigma_{\lambda_{x}^{i} \lambda_{x}^{2}} & \sigma_{\lambda_{x}^{i} \lambda_{y}^{2}} & \ldots & \sigma_{\lambda_{x}^{i} \lambda_{x}^{i}} & \sigma_{\lambda_{x}^{i} \lambda_{y}^{i}} \\
\sigma_{\lambda_{y}^{i} \lambda_{x}^{1}} & \sigma_{\lambda_{y}^{i} \lambda_{y}^{1}} & \sigma_{\lambda_{y}^{i} \lambda_{x}^{2}} & \sigma_{\lambda_{y}^{i} \lambda_{y}^{2}} & \ldots & \sigma_{\lambda_{y}^{i} \lambda_{x}^{i}} & \sigma_{\lambda_{y}^{i} \lambda_{y}^{i}}
\end{array}\right]=\left[\begin{array}{cccc}
\Sigma_{\boldsymbol{\lambda}^{1} \boldsymbol{\lambda}^{1}} & \Sigma_{\boldsymbol{\lambda}^{1} \boldsymbol{\lambda}^{2}} & \ldots & \Sigma_{\lambda^{1} \lambda^{i}} \\
\Sigma_{\boldsymbol{\lambda}^{2} \boldsymbol{\lambda}^{1}} & \Sigma_{\lambda^{2} \boldsymbol{\lambda}^{2}} & \ldots & \Sigma_{\lambda^{2} \lambda^{i}} \\
\ldots & \ldots & \ldots & \ldots \\
\Sigma_{\lambda^{i} \lambda^{1}} & \Sigma_{\lambda^{i} \lambda^{2}} & \ldots & \Sigma_{\lambda^{i} \lambda^{i}}
\end{array}\right]
$$

THE EXPANDED COVARIANCE MATRIX

What are the covariance values for the new predicted coordinates $\left(\hat{\lambda}_{x}^{i}, \hat{\lambda}_{y}^{i}\right)$?

The estimation error associated to the measured coordinates of the newly observed landmark corresponds to the error associated to the sensing measure

The covariance for the estimates $\left(\hat{\lambda}_{x}^{i}, \hat{\lambda}_{y}^{i}\right)$ is the same as the covariance matrix W_{k} modeling the sensing errors

$$
\Sigma_{\lambda^{i} \lambda^{i}}=W_{k}
$$

- What are the cross-covariance values between the new predicted coordinates and those previously in the state?

Cross-covariances are all 0 in the considered model: the observation of one landmark does not provide information about another landmark

- The resulting expanded covariance matrix:

$$
\boldsymbol{P}_{k+1 \mid k}^{*}=\left[\begin{array}{cc}
\boldsymbol{P}_{k \mid k} & \boldsymbol{0}_{2(i-1) \times 2} \\
\mathbf{0}_{2 \times 2(i-1)} & \boldsymbol{W}_{k}
\end{array}\right]
$$

PREDICTION UPDATE FOLLOWING A STATE EXPANSION

- The process dynamics defined through $\boldsymbol{q}()$ is not linear \rightarrow the Jacobian of $\boldsymbol{q}()$ needs to be computed to define the EKF process updating equations based on the expanded state and covariance

$$
\boldsymbol{q}_{k}\left(\boldsymbol{\xi}_{k \mid k}, z_{k+1} ; x_{k}, y_{k}, \theta_{k}\right)=\left[\begin{array}{c}
\boldsymbol{\xi}_{k \mid k} \\
\boldsymbol{g}\left(x_{k}, y_{k}, \theta_{k}, z_{k+1}\right)
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{\xi}_{k \mid k} \\
x_{k}+\rho_{k} \cos \left(\theta_{k}+\beta_{k}\right) \\
y_{k}+\rho_{k} \sin \left(\theta_{k}+\beta_{k}\right)
\end{array}\right]=\left[\begin{array}{c}
\lambda_{k x}^{1} \\
\lambda_{k y}^{1} \\
\lambda_{k x}^{2} \\
\lambda_{k y}^{2} \\
\cdots \\
\lambda_{k x}^{i-1} \\
\lambda_{k y}^{i-1} \\
g_{x}^{k} \\
g_{y}^{k}
\end{array}\right]
$$

JACOBIAN MATRIX

$\boldsymbol{Q}_{k}\left(\boldsymbol{\lambda}_{k}, z_{k+1}, w_{k}^{\rho}, w_{k}^{\beta} ; x_{k}, y_{k}, \theta_{k}\right)=\left[\begin{array}{lllllll}\nabla q_{\lambda_{k x}^{1}} & \nabla q_{\lambda_{k y}^{1}} & \ldots & \nabla q_{\lambda_{k x}} & \nabla q_{\lambda_{k y}^{n}} & \nabla g_{k x} & \nabla g_{k y}\end{array}\right]^{\top}$

$$
\boldsymbol{Q}_{k \boldsymbol{\xi}}=\left[\begin{array}{ccccccc|cc}
\frac{\partial \lambda_{k x}^{1}}{\partial \lambda_{k x}^{1}} & \frac{\partial \lambda_{k x}^{1}}{\partial \lambda_{k y}^{1}} & \frac{\partial \lambda_{k x}^{1}}{\partial \lambda_{k x}^{2}} & \frac{\partial \lambda_{k x}^{1}}{\partial \lambda_{k y}^{2}} & \cdots & \frac{\partial \lambda_{k x}^{1}}{\partial \lambda_{k x}^{i-1}} & \frac{\partial \lambda_{k x}^{1}}{\partial \lambda_{k y}^{i-1}} & \frac{\partial \lambda_{k x}^{1}}{\partial \rho_{k}} & \frac{\partial \lambda_{k x}^{1}}{\partial \beta_{k}} \\
\frac{\partial \lambda_{k y}^{1}}{\partial \lambda_{k x}^{1}} & \frac{\partial \lambda_{k y}^{1}}{\partial \lambda_{k y}^{1}} & \frac{\partial \lambda_{k y}^{1}}{\partial \lambda_{k x}^{2}} & \frac{\partial \lambda_{k y}^{1}}{\partial \lambda_{k y}^{2}} & \cdots & \frac{\partial \lambda_{k y}^{1}}{\partial \lambda_{k x}^{i-1}} & \frac{\partial \lambda_{k y}^{1}}{\partial \lambda_{k y}^{i-1}} & \frac{\partial \lambda_{k y}^{1}}{\partial \rho_{k}} & \frac{\partial \lambda_{k y}^{1}}{\partial \beta_{k}} \\
\cdots & \cdots \\
\frac{\partial \lambda_{k x}^{i-1}}{\partial \lambda_{k x}^{1}} & \frac{\partial \lambda_{k x}^{i-1}}{\partial \lambda_{k y}^{1}} & \frac{\partial \lambda_{k x}^{i-1}}{\partial \lambda_{k x}^{2}} & \frac{\partial \lambda_{k x}^{i-1}}{\partial \lambda_{k y}^{2}} & \cdots & \frac{\partial \lambda_{k x}^{i-1}}{\partial \lambda_{k x}^{i-1}} & \frac{\partial \lambda_{k x}^{i-1}}{\partial \lambda_{k y}^{i-1}} & \frac{\partial \lambda_{k x}^{i-1}}{\partial \rho_{k}} & \frac{\partial \lambda_{k x}^{i-1}}{\partial \beta_{k}} \\
\frac{\partial \lambda_{k y}^{i-1}}{\partial \lambda_{k x}^{1}} & \frac{\partial \lambda_{k y}^{i-1}}{\partial \lambda_{k y}^{1}} & \frac{\partial \lambda_{k y}^{i-1}}{\partial \lambda_{k x}^{2}} & \frac{\partial \lambda_{k y}^{i-1}}{\partial \lambda_{k y}^{2}} & \cdots & \frac{\partial \lambda_{k y}^{i-1}}{\partial \lambda_{k x}^{i-1}} & \frac{\partial \lambda_{k y}^{i-1}}{\partial \lambda_{k y}^{i-1}} & \frac{\partial \lambda_{k y}^{i-1}}{\partial \rho_{k}} & \frac{\partial \lambda_{k y}^{i-1}}{\partial \beta_{k}} \\
\hline \frac{\partial g_{x}^{k}}{\partial \lambda_{k x}^{1}} & \frac{\partial g_{x}^{k}}{\partial \lambda_{k y}^{1}} & \frac{\partial g_{x}^{k}}{\partial \lambda_{k x}^{2}} & \frac{\partial g_{x}^{k}}{\partial \lambda_{k y}^{2}} & \cdots & \frac{\partial g_{x}^{k}}{\partial \lambda_{k x}^{i-1}} & \frac{\partial g_{x}^{k}}{\partial \lambda_{k y}^{i-1}} & \frac{\partial g_{x}^{k}}{\partial \rho_{k}} & \frac{\partial g_{x}^{k}}{\partial \beta_{k}} \\
\frac{\partial g_{k x}^{k}}{\partial \lambda_{k y}^{1}} & \frac{\partial g_{y}^{k}}{\partial \lambda_{k y}^{1}} & \frac{\partial g_{y}^{k}}{\partial \lambda_{k x}^{2}} & \frac{\partial g_{y}^{k}}{\partial \lambda_{k y}^{2}} & \cdots & \frac{\partial g_{y}^{k}}{\partial \lambda_{k x}^{i-1}} & \frac{\partial g_{y}^{k}}{\partial \lambda_{k y}^{i-1}} & \frac{\partial g_{y}^{k}}{\partial \rho_{k}} & \frac{\partial g_{y}^{k}}{\partial \beta_{k}}
\end{array}\right]
$$

JACOBIANS FOR LINEARIZATION OF $q_{k}()$

- Said $n=(i-1)$, the number of landmarks before the current new observation, the dimension of the covariance matrix before the expansion is $2 n \times 2 n$, while the dimension of the Jacobian \boldsymbol{Q} is $(2 n+2) \times(2 n+3+2)$
- $\boldsymbol{Q}_{k \xi}$ is evaluated at the current observation z_{k+1}, therefore is also referred to as $\boldsymbol{Q}_{z_{k+1}}$
- The Jacobian $\boldsymbol{Q}_{k \xi}$ of $\boldsymbol{q}_{k}()$ for the linearization of the state dynamics in the case of state expansion can be also expressed in a more compact form:

$$
\begin{gathered}
\boldsymbol{Q}_{k \boldsymbol{\xi}}=\left[\begin{array}{cc}
\boldsymbol{I}_{2 n \times 2 n} & \boldsymbol{0}_{2 n \times 2} \\
\boldsymbol{G}_{\boldsymbol{\xi}} & \boldsymbol{G}_{z}
\end{array}\right]_{\hat{\boldsymbol{\xi}}_{k \mid k}, z_{k+1}, x_{k}, y_{k}, \theta_{k}, \boldsymbol{w}=0} \\
\boldsymbol{G}_{\boldsymbol{\xi}}=\frac{\partial \boldsymbol{g}_{k}}{\partial \boldsymbol{\xi}_{k}}=\left[\begin{array}{lll}
0 & \ldots & 0 \\
0 & \ldots & 0
\end{array}\right] \quad \boldsymbol{G}_{z}=\frac{\partial \boldsymbol{g}_{k}}{\partial z_{k}}=\left[\begin{array}{cc}
\cos \left(\theta_{k}+\beta_{k}\right) & -\rho_{k} \sin \left(\theta_{k}+\beta_{k}\right) \\
\sin \left(\theta_{k}+\beta_{k}\right) & \rho_{k} \cos \left(\theta_{k}+\beta_{k}\right)
\end{array}\right]
\end{gathered}
$$

- The Jacobian $Q_{k \xi}$ allows to linearly transform (expand) the covariance matrix P_{k} when adding a new landmark to the state vector:

$$
P_{k \mid k+1}^{*}=\boldsymbol{Q}_{k \xi}\left[\begin{array}{cc}
\boldsymbol{P}_{k \mid k} & \mathbf{0}_{2 n \times 2} \\
\mathbf{0}_{2 \times 2 n} & \boldsymbol{W}_{k}
\end{array}\right] \boldsymbol{Q}_{k \xi}^{T}=\left[\begin{array}{cc}
\boldsymbol{P}_{k \mid k} & \mathbf{0}_{2 n \times 2} \\
\mathbf{0}_{2 \times 2 n} & \boldsymbol{G}_{z} \boldsymbol{W}_{k} \boldsymbol{G}_{z}^{T}
\end{array}\right]
$$

which results in an expanded $2(n+1) \times 2(n+1)$ matrix

EKF INCLUDING STATE EXPANSION

- The Jacobians $L_{k \xi}$ and $L_{k w}$ of $\boldsymbol{\ell}_{k}()$, computed before, accounts for the linearization of the observation model when an already discovered landmark is observed (x_{k} and y_{k} are parameters):

$$
L_{k \xi}=\left[\begin{array}{llllllll}
0 & 0 & \ldots & \frac{\lambda_{k x}^{i}-x_{k}}{r_{k}^{i}} & \frac{\lambda_{k y}^{i}-y_{k}}{r_{k}^{i}} & \ldots & 0 & 0 \\
0 & 0 & \ldots & -\frac{\lambda_{k y}^{i}-y_{k}}{\left(r_{k}^{i}\right)^{2}} & \frac{\lambda_{k x}^{i}-x_{k}}{\left(r_{k}^{i}\right)^{2}} & \ldots & 0 & 0
\end{array}\right]_{\hat{\xi}_{k+1 \mid k}, 0} \quad L_{k w}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

- The complete EKF equations:

When a new landmark i is observed:
$\hat{\boldsymbol{\xi}}_{k+1 \mid k}^{*}=\boldsymbol{q}_{k}\left(\hat{\boldsymbol{\lambda}}_{k \mid k}, z_{k+1}, x_{k}, y_{k}, \theta_{k}\right)$
At every time step $k+1$ a landmark i is observed
$\hat{\boldsymbol{\xi}}_{k+1}=\hat{\boldsymbol{\xi}}_{k+1 \mid k}+\boldsymbol{G}_{k+1}\left(z_{k+1}-\boldsymbol{\ell}_{k}\left(\hat{\boldsymbol{\lambda}}_{k+1 \mid k}, \mathbf{0} ; x_{k}, y_{k}, \theta_{k}\right)\right)$
$P_{k+1}=P_{k+1 \mid k}-G_{k+1} L_{k \xi} P_{k+1 \mid k}$
$\boldsymbol{G}_{k+1}=\boldsymbol{P}_{k+1 \mid k} L_{k \xi}{ }^{\top} \boldsymbol{S}_{k+1}^{-1}$
$\boldsymbol{S}_{k+1}=L_{k \xi} \boldsymbol{P}_{k+1 \mid k} L_{k \xi}{ }^{\top}+L_{k w} \boldsymbol{W}_{k+1} L_{k w}{ }^{\top}$

SOLVING LOCALIZATION AND MAPPING TOGETHER

- The previous derivation was based on the fact that robot's localization was perfect
- Since this is not (usually) the case, let's solve the joint problem: Simultaneous Localization and Mapping (SLAM)

The state vector needs to include also robot's coordinates, since also robot's pose needs to be estimated

$$
\boldsymbol{\xi}=\left[\begin{array}{lllll}
x, y, \theta, \lambda_{x}^{1} & \lambda_{y}^{1} & \lambda_{x}^{2} & \lambda_{y}^{2} & \ldots
\end{array} \lambda_{x}^{M} \lambda_{y}^{M}\right]^{\top}
$$

$\boldsymbol{\xi}$ has now dimension $(2 M+3) \times 1$, and P is a $(2 M+3) \times(2 M+3)$ matrix

THE SLAM CHALLENGE IN A NUTSHELL

- Looking for absolute robot pose
- Looking for absolute landmark positions
- But only relative measurements of landmarks are available

WHY SLAM IS A HARD PROBLEM

- Robot path and the landmark map are both unknown
- Errors in map and pose estimates are correlated
- Mapping between observations and landmarks is unknown
- Data Association: Selecting wrong data association can be disastrous (divergence)

STATE VECTOR AND COVARIANCE MATRIX

- The state vector and the covariance matrix: the state vector includes both the robot's generalized coordinates and landmarks' coordinates; said $n=(i-1)$ the number of discovered landmarks at step k :

$$
\boldsymbol{\xi}_{k}=\left[\begin{array}{lllllll}
x_{k} & y_{k} & \theta_{k} & \boldsymbol{\lambda}_{k}^{1} & \boldsymbol{\lambda}_{k}^{2} & \ldots & \boldsymbol{\lambda}_{k}^{n}
\end{array}\right]^{T}=\left[\begin{array}{ll}
\boldsymbol{\xi}_{R_{k}} & \boldsymbol{\xi}_{\lambda_{k}^{n}}
\end{array}\right]^{T}
$$

and the resulting covariance matrix (omitting the index k) is:

$$
\boldsymbol{P}_{(3+2 n) \times(3+2 n)}=\left[\begin{array}{lll|lllll}
\sigma_{x x} & \sigma_{x y} & \sigma_{x \theta} & \sigma_{x \lambda_{x}^{1}} & \sigma_{x \lambda_{y}^{1}} & \ldots & \sigma_{x \lambda_{x}^{n}} & \sigma_{x \lambda_{y}^{n}} \\
\sigma_{y x} & \sigma_{y y} & \sigma_{y \theta} & \sigma_{y \lambda_{x}^{1}} & \sigma_{y \lambda_{y}^{1}} & \ldots & \sigma_{y \lambda_{x}^{n}} & \sigma_{y \lambda_{y}^{n}} \\
\sigma_{\theta x} & \sigma_{\theta y} & \sigma_{\theta \theta} & \sigma_{\theta \lambda_{x}^{1}} & \sigma_{\theta \lambda_{y}^{1}} & \ldots & \sigma_{\theta \lambda_{x}^{n}} & \sigma_{\theta \lambda_{y}^{n}} \\
\hline \sigma_{\lambda_{x}^{1} x} & \sigma_{\lambda_{x}^{1} y} & \sigma_{\lambda_{x}^{1} \theta} & \sigma_{\lambda_{x}^{1} \lambda_{x}^{1}} & \sigma_{\lambda_{x}^{1} \lambda_{y}^{1}} & \ldots & \sigma_{\lambda_{x}^{1} \lambda_{x}^{n}} & \sigma_{\lambda_{x}^{1} \lambda_{y}^{n}} \\
\sigma_{\lambda_{y}^{1} x} & \sigma_{\lambda_{y}^{1} y} & \sigma_{\lambda_{y}^{1} \theta} & \sigma_{\lambda_{y}^{1} \lambda_{x}^{1}} & \sigma_{\lambda_{y}^{1} \lambda_{y}^{1}} & \ldots & \sigma_{\lambda_{y}^{1} \lambda_{x}^{n}} & \sigma_{\lambda_{y}^{1} \lambda_{y}^{n}} \\
\ldots & \ldots \\
\sigma_{\lambda_{x}^{n} x} & \sigma_{\lambda_{x}^{n} y} & \sigma_{\lambda_{x}^{n} \theta} & \sigma_{\lambda_{x}^{n} \lambda_{x}^{n}} & \sigma_{\lambda_{x}^{n} \lambda_{y}^{n}} & \ldots & \sigma_{\lambda_{x}^{n} \lambda_{x}^{n}} & \sigma_{\lambda_{x}^{n} \lambda_{y}^{n}} \\
\sigma_{\lambda_{y}^{n} x} & \sigma_{\lambda_{y}^{n} y} & \sigma_{\lambda_{y}^{n} \theta} & \sigma_{\lambda_{y}^{n} \lambda_{x}^{n}} & \sigma_{\lambda_{y}^{n} \lambda_{y}^{n}} & \ldots & \sigma_{\lambda_{y}^{n} \lambda_{x}^{n}} & \sigma_{\lambda_{y}^{n} \lambda_{y}^{n}}
\end{array}\right]=\left[\begin{array}{cc}
\Sigma_{R R} & \Sigma_{R \lambda} \\
\Sigma_{R \lambda}^{T} & \Sigma_{\lambda \lambda}
\end{array}\right]
$$

THE SLAM MOVIE

- Robot's pose prediction using the odometry model

- Observe the environment while moving:

1 Get a landmark observation
2 Perform a measurement prediction using the map (being) created

- Compare predicted and observed measure to perform data association (is a new landmark?) and compute innovation
- Update predictions for robot pose and landmark's position

EKF EQUATIONS FOR SLAM?

Combination of all equations from previous cases!

1 Robot's pose prediction using the odometry model: EKF based on the linearization of the motion equations using the Jacobians $F_{k \xi}$ and $F_{k v}$ computed previously, and the new (constant) Jacobian $F_{k \lambda}$, to reduce the motion equation to a linear form of the type $\boldsymbol{\xi}_{k+1}=\boldsymbol{A}_{k} \boldsymbol{\xi}_{k}+\boldsymbol{\nu}_{k} \rightarrow$ EKF where non linearity refers to process dynamics

2 Robot's pose prediction correction after the sensory observation of a landmark, whose position is reported on a map: EKF based on the linearization of the observation equations using the Jacobians $\boldsymbol{H}_{k \boldsymbol{\xi}}$ and $\boldsymbol{H}_{k \boldsymbol{w}}$ to reduce the observation equation to a linear form of the type $z_{k+1}=C_{k} \boldsymbol{\xi}_{k}+\boldsymbol{w}_{k} \rightarrow$ EKF where non linearity refers to measurement process

3 Landmark's position estimation using robot's sensory data and known pose (map building): EKF based on the linearization of the observation equations using the Jacobians $L_{k \xi}$ and $L_{k w}$ to reduce the observation equation to a linear form of the type $z_{k+1}=\boldsymbol{C}_{k} \boldsymbol{\xi}_{k}+\boldsymbol{w}_{k} \rightarrow$ EKF where non linearity refers to measurement process

4 State expansion after observing a previously unseen landmark: EKF based on the linearization of the process dynamics using the Jacobian $\boldsymbol{Q}_{k z}$ to reduce the process equation to a linear form of the type $\boldsymbol{\xi}_{k+1}=\boldsymbol{A}_{k} \boldsymbol{\xi}_{k}+\boldsymbol{\nu}_{k} \rightarrow$ EKF where non linearity refers to system evolution

STATE AND OBSERVATION EQUATIONS FOR SLAM

- State equation for robot motion, including also the $\boldsymbol{\lambda}$ in the state vector:

At each step $k: \quad \boldsymbol{\xi}_{k+1}=\left[\begin{array}{c}x_{k} \\ y_{k} \\ \theta_{k} \\ \boldsymbol{\lambda}_{k}^{1} \\ \cdots \\ \boldsymbol{\lambda}_{k}^{n}\end{array}\right]+\left[\begin{array}{c}\left(\Delta S_{k}+\nu_{k}^{s}\right) \cos \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}+\nu_{k}^{\theta}\right) \\ \left(\Delta S_{k}+\nu_{k}^{s}\right) \sin \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}+\nu_{k}^{\theta}\right) \\ \Delta \theta_{k}+\nu_{k}^{\theta} \\ 0 \\ \cdots \\ 0\end{array}\right]=\boldsymbol{f}_{k}\left(\boldsymbol{\xi}_{k}, \boldsymbol{\nu}_{k} ; \Delta S_{k}, \Delta \theta_{k}\right)$

- State equation for state expansion, when a previously unseen landmark i is observed:

$$
\boldsymbol{\xi}_{k+1}^{*}=\left[\begin{array}{c}
\boldsymbol{\xi}_{k} \\
\boldsymbol{g}_{k}\left(x_{k}, y_{k}, \theta_{k}, z_{k}\right)
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{\xi}_{k} \\
x_{k}+\rho_{k} \cos \left(\theta_{k}+\beta_{k}\right) \\
y_{k}+\rho_{k} \sin \left(\theta_{k}+\beta_{k}\right)
\end{array}\right]=\boldsymbol{q}_{k}\left(\boldsymbol{\xi}_{k}, z_{k+1}\right)
$$

- Observation model, which is unchanged from the previous scenario, but now
$\lambda_{k x}^{i}, \lambda_{k y}^{i}, x_{k}, y_{k}, \theta_{k}$ are variables, such that z_{k+1} can be seen as the overlapping of the functions $\boldsymbol{h}_{k}()$ and $\boldsymbol{\ell}_{k}()$ that have been considered for the localization-only and mapping-only cases before:

$$
z_{k+1}=\left[\begin{array}{c}
\rho_{k+1}^{i} \\
\beta_{k+1}^{i}
\end{array}\right]=\left[\begin{array}{c}
\sqrt{\left(\lambda_{k x}^{i}-x_{k}\right)^{2}+\left(\lambda_{k y}^{i}-y_{k}\right)^{2}} \\
\arctan \left(\left(\lambda_{k y}^{i}-y_{k}\right) /\left(\lambda_{k x}^{i}-x_{k}\right)\right)-\theta_{k}
\end{array}\right]+\left[\begin{array}{c}
w_{k}^{\rho} \\
w_{k}^{\mathcal{\beta}}
\end{array}\right]=\boldsymbol{o}_{k}\left(\boldsymbol{\xi}_{k}, \boldsymbol{w}_{k}\right)
$$

JACOBIANS

- The Jacobians $\boldsymbol{F}_{k \boldsymbol{\xi}}$, and $\boldsymbol{F}_{k \nu}$ of $\boldsymbol{f}_{k}()$, to be evaluated in $\left(\boldsymbol{\xi}_{k}=\hat{\boldsymbol{\xi}}_{k \mid k}, \boldsymbol{\nu}_{k}=0\right)$, for the linearization of the motion dynamics, which is robot's motion since landmarks do not move (Jacobians are (re)computed because of the new sub-matrix $\boldsymbol{F}_{k \xi_{\lambda^{n}}}$ in the $\boldsymbol{F}_{k \xi}$ Jacobian):

$$
\begin{aligned}
& f_{k x}=x_{k}+\left(\Delta S_{k}+\nu_{k}^{s}\right) \cos \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}+\nu_{k}^{\theta}\right) \\
& f_{k y}=y_{k}+\left(\Delta S_{k}+\nu_{k}^{s}\right) \sin \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}+\nu_{k}^{\theta}\right) \\
& f_{k \theta}=\theta_{k}+\Delta \theta_{k}+\nu_{k}^{\theta} \\
& f_{k \lambda^{1}}=\lambda_{k}^{1} \\
& \cdots \\
& f_{k \lambda^{n}}=\lambda_{k}^{n}
\end{aligned} \Rightarrow
$$

$$
\left[\begin{array}{cccccccc}
\frac{\partial f_{k x}}{\partial x_{k}} & \frac{\partial f_{k x}}{\partial y_{k}} & \frac{\partial f_{k x}}{\partial \theta_{k}} & \frac{\partial f_{k x}}{\partial \boldsymbol{\lambda}_{k}^{1}} & \cdots & \frac{f_{k x}}{\partial \boldsymbol{\lambda}_{k}^{n}} & \frac{\partial f_{k x}}{\partial \nu_{k}^{s}} & \frac{\partial f_{k x}}{\partial \nu_{k}^{\theta}} \\
\frac{\partial f_{k y}}{\partial x_{k}} & \frac{\partial f_{k y}}{\partial y_{k}} & \frac{\partial f_{k y}}{\partial \theta_{k}} & \frac{\partial f_{k y}}{\partial \boldsymbol{\lambda}_{k}^{1}} & \cdots & \frac{f_{k y}}{\partial \boldsymbol{\lambda}_{k}^{n}} & \frac{\partial f_{k y}}{\partial \nu_{k}^{s}} & \frac{\partial f_{k y}}{\partial \nu_{k}^{\theta}} \\
\frac{\partial f_{k \theta}}{\partial x_{k}} & \frac{\partial f_{k \theta}}{\partial y_{k}} & \frac{\partial f_{k \theta}}{\partial \theta_{k}} & \frac{\partial f_{k \theta}}{\partial \boldsymbol{\lambda}_{k}^{1}} & \cdots & \frac{f_{k \theta}}{\partial \boldsymbol{\lambda}_{k}^{n}} & \frac{\partial f_{k \theta}}{\partial \nu_{k}^{s}} & \frac{\partial f_{k \theta}}{\partial \nu_{k}^{\theta}} \\
\frac{\partial f_{k \boldsymbol{\lambda}^{1}}}{\partial x_{k}} & \frac{\partial f_{k \boldsymbol{\lambda}^{1}}}{\partial y_{k}} & \frac{\partial f_{k \boldsymbol{\lambda}^{1}}}{\partial \theta_{k}} & \frac{\partial f_{k \boldsymbol{\lambda}^{1}}^{\partial}}{\partial \boldsymbol{\lambda}_{k}^{1}} & \cdots & \frac{\partial f_{k \boldsymbol{\lambda}^{1}}}{\partial \boldsymbol{\lambda}_{k}^{n}} & \frac{\partial f_{k \boldsymbol{\lambda}^{1}}}{\partial \nu_{k}^{s}} & \frac{\partial f_{k \boldsymbol{\lambda}^{1}}^{\partial}}{\partial \nu_{k}^{\theta}} \\
\cdots & \cdots \\
\frac{\partial f_{k \boldsymbol{\lambda}^{n}}}{\partial x_{k}} & \frac{\partial f_{k \boldsymbol{\lambda}^{n}}}{\partial y_{k}} & \frac{\partial f_{k \boldsymbol{\lambda}^{n}}}{\partial \theta_{k}} & \frac{\partial f_{k \boldsymbol{\lambda}^{n}}}{\partial \boldsymbol{\lambda}_{k}^{1}} & \cdots & \frac{\partial f_{k \boldsymbol{\lambda}^{n}}}{\partial \boldsymbol{\lambda}_{k}^{n}} & \frac{\partial f_{k \lambda^{n}}}{\partial \nu_{k}^{s}} & \frac{\partial f_{k \boldsymbol{\lambda}^{n}}}{\partial \nu_{k}^{\theta}}
\end{array}\right]=\left[\begin{array}{llll}
F_{k \xi_{R}} & F_{k \xi_{\lambda} n} & F_{k \nu}
\end{array}\right]
$$

JACOBIANS FOR ROBOT POSE

$$
\left[\begin{array}{cccccccc}
\frac{\partial f_{k x}}{\partial x_{k}} & \frac{\partial f_{k x}}{\partial y_{k}} & \frac{\partial f_{k x}}{\partial \theta_{k}} & \frac{\partial f_{k x}}{\partial \boldsymbol{\lambda}_{k}^{1}} & \cdots & \frac{f_{k x}}{\partial \boldsymbol{\lambda}_{k}^{n}} & \frac{\partial f_{k x}}{\partial \nu_{k}^{s}} & \frac{\partial f_{k x}}{\partial \nu_{k}^{\theta}} \\
\frac{\partial f_{k y}}{\partial x_{k}} & \frac{\partial f_{k y}}{\partial y_{k}} & \frac{\partial f_{k y}}{\partial \theta_{k}} & \frac{\partial f_{k y}}{\partial \boldsymbol{\lambda}_{k}^{1}} & \cdots & \frac{f_{k y}}{\partial \boldsymbol{\lambda}_{k}^{n}} & \frac{\partial f_{k y}}{\partial \nu_{k}^{s}} & \frac{\partial f_{k y}}{\partial \nu_{k}^{\theta}} \\
\frac{\partial f_{k \theta}}{\partial x_{k}} & \frac{\partial f_{k \theta}}{\partial y_{k}} & \frac{\partial f_{k \theta}}{\partial \theta_{k}} & \frac{\partial f_{k \theta}}{\partial \boldsymbol{\lambda}_{k}^{1}} & \cdots & \frac{f_{k \theta}}{\partial \boldsymbol{\lambda}_{k}^{n}} & \frac{\partial f_{k \theta}}{\partial \nu_{k}^{s}} & \frac{\partial f_{k \theta}}{\partial \nu_{k}^{\theta}} \\
\frac{\partial f_{k \boldsymbol{\lambda}^{1}}}{\partial x_{k}} & \frac{\partial f_{k \boldsymbol{\lambda}^{1}}}{\partial y_{k}} & \frac{\partial f_{k \boldsymbol{\lambda}^{1}}}{\partial \theta_{k}} & \frac{\partial f_{k \boldsymbol{\lambda}^{1}}^{\partial \boldsymbol{\lambda}_{k}^{1}}}{\cdots} & \frac{\partial f_{k \boldsymbol{\lambda}^{1}}}{\partial \boldsymbol{\lambda}_{k}^{n}} & \frac{\partial f_{k \lambda^{1}}}{\partial \nu_{k}^{s}} & \frac{\partial f_{k \lambda^{1}}}{\partial \nu_{k}^{\theta}} \\
\cdots & \cdots \\
\frac{\partial f_{k \boldsymbol{\lambda}^{n}}}{\partial x_{k}} & \frac{\partial f_{k \boldsymbol{\lambda}^{n}}}{\partial y_{k}} & \frac{\partial f_{k \boldsymbol{\lambda}^{n}}}{\partial \theta_{k}} & \frac{\partial f_{k \boldsymbol{\lambda}^{n}}}{\partial \boldsymbol{\lambda}_{k}^{1}} & \cdots & \frac{\partial f_{k \boldsymbol{\lambda}^{n}}}{\partial \boldsymbol{\lambda}_{k}^{n}} & \frac{\partial f_{k \lambda^{n}}}{\partial \nu_{k}^{s}} & \frac{\partial f_{k \lambda^{n}}}{\partial \nu_{k}^{\theta}}
\end{array}\right]=\left[\begin{array}{lll}
F_{k \xi_{R}} & F_{k \xi_{\lambda^{n}}} & F_{k \nu}
\end{array}\right]
$$

$$
F_{k \xi}=\left[\begin{array}{ccc|c}
1 & 0 & -\Delta S_{k} \sin \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}\right) & \\
0 & 1 & \Delta S_{k} \cos \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}\right) & 0_{3 \times 2 n} \\
0 & 0 & 1 & \\
\hline & 0_{2 n \times 3} & I_{2 n \times 2 n}
\end{array}\right]_{\hat{\xi}_{k \mid k}, \nu=0}
$$

$$
F_{k \nu}=\left[\begin{array}{cc}
\cos \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}\right) & -\Delta S_{k} \sin \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}\right) \\
\sin \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}\right) & \Delta S_{k} \cos \left(\theta_{k}+\frac{\Delta \theta_{k}}{2}\right) \\
0 & 1
\end{array}\right]_{\hat{\xi}_{k \mid k}, \boldsymbol{\nu}=0}
$$

JACOBIANS FOR THE OBSERVATION MODELS (LOCALIZATION AND MAPPING)

- The Jacobians $O_{k \xi}$ and $O_{k w}$ of $\boldsymbol{o}_{k}()$ for the linearization of the observation model for both localization and mapping, to be evaluated in $\left(\boldsymbol{\xi}_{k}=\hat{\boldsymbol{\xi}}_{k+1 \mid k}, \boldsymbol{w}_{k}=0\right)$. The Jacobians are derived from the combination of the Jacobians $\boldsymbol{H}_{k \xi}$ and $\boldsymbol{L}_{k \xi}$ computed for the localization-only and mapping-only cases:

$$
\begin{aligned}
& o_{k \rho}=\sqrt{\left(\lambda_{k x}^{i}-x_{k}\right)^{2}+\left(\lambda_{k y}^{i}-y_{k}\right)^{2}}+w_{k}^{\rho} \quad \boldsymbol{O}_{k}\left(x_{k}, y_{k}, \theta_{k}, \boldsymbol{\lambda}_{k}, w_{k}^{\rho}, w_{k}^{\beta}\right)=\left[\begin{array}{ll}
\nabla h_{k \rho} & \nabla h_{k \beta}
\end{array}\right]^{\top} \\
& o_{k \beta}=\arctan \left(\left(\lambda_{y x}^{i}-y_{k}\right) /\left(\lambda_{k x}^{i}-x_{k}\right)\right)-\theta_{k}+w_{k}^{\beta}
\end{aligned}
$$

$\boldsymbol{O}_{k}=\left[\begin{array}{llllllllll}\frac{\partial o_{k \rho}}{\partial x_{k}} & \frac{\partial o_{k \rho}}{\partial y_{k}} & \frac{\partial o_{k \rho}}{\partial \theta_{k}} & \frac{\partial o_{k \rho}}{\partial \lambda_{k x}^{1}} & \frac{\partial o_{k \rho}}{\partial \lambda_{k y}^{2}} & \ldots & \frac{\partial o_{k \rho}}{\partial \lambda_{k x}^{n}} & \frac{\partial o_{k \rho}}{\partial \lambda_{k y}^{n}} & \frac{\partial o_{k \rho}}{\partial w_{k}^{\rho}} & \frac{\partial o_{k \rho}}{\partial w_{k}^{\beta}} \\ \frac{\partial o_{k \beta}}{\partial x_{k}} & \frac{\partial o_{k \beta}}{\partial y_{k}} & \frac{\partial o_{k \beta}}{\partial \theta_{k}} & \frac{\partial o_{k \beta}}{\partial \lambda_{k x}^{1}} & \frac{\partial o_{k \beta}}{\partial \lambda_{k y}^{2}} & \ldots & \frac{\partial o_{k \beta}}{\partial \lambda_{k x}^{n}} & \frac{\partial o_{k \beta}}{\partial \lambda_{k y}^{n}} & \frac{\partial o_{k \beta}}{\partial w_{k}^{\rho}} & \frac{\partial o_{k \beta}}{\partial w_{k}^{\beta}}\end{array}\right]=\left[\begin{array}{lllllll}\boldsymbol{O}_{k \xi_{R}} & \boldsymbol{O}_{k \xi_{\lambda} n} & O_{k w}\end{array}\right]$ $\boldsymbol{O}_{k \xi}=\left[\begin{array}{ccccccccccc}-\frac{\lambda_{k x}^{i}-x_{k}}{r_{k}^{i}} & -\frac{\lambda_{k y}^{i}-y_{k}}{r_{k}^{i}} & 0 & 0 & 0 & \ldots & \frac{\lambda_{k x}^{i}-x_{k}}{r_{k}^{i}} & \frac{\lambda_{k y}^{i}-y_{k}}{r_{k}^{i}} & \ldots & 0 & 0 \\ \frac{\lambda_{k y}^{i}-y_{k}}{\left(r_{k}^{i}\right)^{2}} & -\frac{\lambda_{k x}^{i}-x_{k}}{\left(r_{k}^{i}\right)^{2}} & -1 & 0 & 0 & \ldots & -\frac{\lambda_{k y}^{i}-y_{k}}{\left(r_{k}^{i}\right)^{2}} & \frac{\lambda_{k x}^{i}-x_{k}}{\left(r_{k}^{i}\right)^{2}} & \ldots & 0 & 0\end{array}\right] \quad O_{k w}=\left[\begin{array}{lll}1 & 0 \\ 0 & 1\end{array}\right]$

JACOBIANS FOR LANDMARK STATE EXPANSION

$$
\boldsymbol{q}_{k}\left(\boldsymbol{\xi}_{k \mid k}, z_{k+1}, x_{k}, y_{k}, \theta_{k}\right)=\left[\begin{array}{c}
\boldsymbol{\xi}_{k \mid k} \\
\boldsymbol{g}\left(x_{k}, y_{k}, \theta_{k}, z_{k+1}\right)
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{\xi}_{k \mid k} \\
x_{k}+\rho_{k} \cos \left(\theta_{k}+\beta_{k}\right) \\
y_{k}+\rho_{k} \sin \left(\theta_{k}+\beta_{k}\right)
\end{array}\right]=\left[\begin{array}{c}
\lambda_{k x}^{1} \\
\lambda_{k y}^{1} \\
\lambda_{k x}^{2} \\
\lambda_{k y}^{2} \\
\cdots \\
\lambda_{k x}^{i-1} \\
\lambda_{k y}^{i-1} \\
g_{x}^{k} \\
g_{y}^{k}
\end{array}\right]
$$

- The Jacobian $Q_{k \xi}$ of $\boldsymbol{q}_{k}()$ for the linearization of the state dynamics when a new landmark is observed (state expansion with landmark initialization); $\boldsymbol{Q}_{k \xi}$ is obtained as in the mapping-only case + the fact that now $\boldsymbol{G}_{\xi}=\left[\boldsymbol{G}_{\xi_{R}} \boldsymbol{G}_{\boldsymbol{\xi}_{\lambda}}\right]$ is non-zero since $\boldsymbol{\xi}_{R}$ is part of the state vector, making $\boldsymbol{G}_{\xi_{R}} \neq \mathbf{0}$:

$$
\begin{gathered}
\boldsymbol{Q}_{k \boldsymbol{\xi}}=\left[\begin{array}{ccc}
\boldsymbol{I}_{(3+2 n) \times(3+2 n)} & \boldsymbol{0}_{(3+2 n) \times 2} \\
\boldsymbol{G}_{\xi_{R}} & \boldsymbol{0}_{2 \times 2 n} & \boldsymbol{G}_{z}
\end{array}\right]_{\hat{\boldsymbol{\xi}}_{k \mid k}, z_{k}, \boldsymbol{w}=0} \\
\boldsymbol{G}_{\boldsymbol{\xi}_{R}}=\frac{\partial \boldsymbol{g}_{k}}{\partial \boldsymbol{\xi}_{R}}=\left[\begin{array}{ccc}
1 & 0 & -\rho_{k} \sin \left(\theta_{k}+\beta_{k}\right) \\
0 & 1 & \rho_{k} \cos \left(\theta_{k}+\beta_{k}\right)
\end{array}\right] \quad \boldsymbol{G}_{z}=\frac{\partial \boldsymbol{g}_{k}}{\partial z}=\left[\begin{array}{cc}
\cos \left(\theta_{k}+\beta_{k}\right) & -\rho_{k} \sin \left(\theta_{k}+\beta_{k}\right) \\
\sin \left(\theta_{k}+\beta_{k}\right) & \rho_{k} \cos \left(\theta_{k}+\beta_{k}\right)
\end{array}\right]
\end{gathered}
$$

EKF EQUATIONS FOR SLAM

- The SLAM EKF equations:

At every time step k :

$$
\begin{array}{ll}
\hat{\xi}_{k+1 \mid k}=f_{k}\left(\hat{\xi}_{k \mid k}, 0 ; \Delta S_{k}, \Delta \theta_{k}\right) & \boldsymbol{\xi}_{k+1 \mid k}^{*}=\boldsymbol{q}_{k}\left(\boldsymbol{\xi}_{k \mid k}, z_{k+1}\right) \\
\boldsymbol{P}_{k+1 \mid k}=F_{k \xi} P_{k} F_{k \xi}{ }^{\top}+F_{k \nu} \boldsymbol{V}_{k} F_{k \nu}^{\top} & P_{k+1 \mid k}^{*}=\boldsymbol{Q}_{k \xi}\left[\begin{array}{cc}
\boldsymbol{P}_{k \mid k} & 0 \\
0 & \boldsymbol{W}_{k}
\end{array}\right] \boldsymbol{Q}_{k \xi}{ }^{\top}
\end{array}
$$

At every time step $k+1$ a landmark i is observed

$$
\begin{aligned}
& \hat{\xi}_{k+1}=\hat{\xi}_{k+1 \mid k}+G_{k+1}\left(z_{k+1}-o_{k}\left(\hat{\xi}_{k+1 \mid k}, 0\right)\right) \\
& \boldsymbol{P}_{k+1}=\boldsymbol{P}_{k+1 \mid k}-\boldsymbol{G}_{k+1} O_{k \xi} P_{k+1 \mid k} \\
& \boldsymbol{G}_{k+1}=\boldsymbol{P}_{k+1 \mid k} O_{k \xi}{ }^{\top} \boldsymbol{S}_{k+1}^{-1} \\
& \boldsymbol{S}_{k+1}=\boldsymbol{O}_{k \xi} \boldsymbol{P}_{k+1 \mid k} O_{k \xi}^{\top}+O_{k w} \boldsymbol{W}_{k+1} O_{k w}{ }^{\top}
\end{aligned}
$$

- The Kalman gain matrix G multiplies innovation from the landmark observation, a 2-vector, so as to update every element of the state vector: the pose of the vehicle and the position of every map feature.

SLAM PERFORMANCE IN SIMULATION

COVARIANCE VS. TIME

