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PROBLEM: WHAT IF THE NUMBER OF LANDMARKS IS UKNOWN? 

The state vector ξk must be incrementally expanded 
by two new coordinate components [𝝀ix 𝝀iy ] each 

time a new landmark 𝝀i is observed 

Usually, both the locations and the number M of the landmarks 
existing in the environment are not known a priori

Where(?) the M(?) landmarks?

State vector ξ of the EKF: 
(Coordinates of the M landmarks) 

Formally, the expansion of the state vector ξk amounts to the following process 
dynamics (before process dynamics was stationary), implemented through the use of 

the auxiliary (non linear!) function q():
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If ⇠k is 2n ⇥ 1, n < M ) ⇠⇤k+1 is 2(n + 1)⇥ 1.
The order of the landmarks in the state 
vector depends on the order of observation 
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 THE STATE EXPANSION FUNCTION
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• The vector function g(x, y, θ, z), which is the inverse of the observation function 
l(), gives the measured coordinates (in the world frame) of the observed landmark. 

• Inputs: known vehicle pose [︎x y θ]T , sensor observation z = [︎ρ β]T at time step k.  

• g() gets the local robot measure and outputs the world coordinates of the 
observed landmark: 
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EXPANDING BOTH STATE AND COVARIANCE MATRIX

• After the new landmark i has been observed, at step k + 1, the expanded state vector: 
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• Without losing generality, let’s assume that the landmarks are ordered incrementally in 
the state vector → landmark i is the i-th discovered landmark: 
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• The new expanded covariance matrix, of dimension 2i × 2i: 
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T H E  E X PA N D E D  C O VA R I A N C E  M AT R I X
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P R E D I C T I O N  U P D AT E   
F O L L O W I N G  A  S TAT E  E X PA N S I O N

• The process dynamics defined through q() is not linear → the Jacobian of q() 
needs to be computed to define the EKF process updating equations based on 
the expanded state and covariance 
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J A C O B I A N  M AT R I X
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J A C O B I A N S  F O R  L I N E A R I Z AT I O N  O F  q k( )JACOBIAN OF qK()

Said n = (i � 1), the number of landmarks before the current new observation, the
dimension of the covariance matrix before the expansion is 2n ⇥ 2n, while the dimension of
the Jacobian Q is (2n + 2)⇥ (2n + 3 + 2)
Qk⇠ is evaluated at the current observation zk+1, therefore is also referred to as Qzk+1

The Jacobian Qk⇠ of qk() for the linearization of the state dynamics in the case of state
expansion can be also expressed in a more compact form:
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The Jacobian Qk⇠ allows to linearly transform (expand) the covariance matrix Pk when
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which results in an expanded 2(n + 1)⇥ 2(n + 1) matrix
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E K F  I N C L U D I N G  S TAT E  E X PA N S I O NFILTER EQUATIONS ACCOUNTING FOR STATE VECTOR EXPANSION

The Jacobians Lk⇠ and Lkw of `k(), computed before, accounts for the linearization of the
observation model when an already discovered landmark is observed (xk and yk are
parameters):
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The complete EKF equations:

When a new landmark i is observed:
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At every time step k + 1 a landmark i is observed
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SOLVING LANDMARK MAPPING AND ROBOT LOCALIZATION TOGETHER

The previous derivation was based on the fact that robot’s localization was perfect

Since this is not (usually) the case, let’s solve the joint problem:

Simultaneous Localization and Mapping (SLAM)

The state vector needs to include also robot’s coordinates, since also robot’s pose
needs to be estimated

⇠ =
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M
y

⇤T

⇠ has now dimension (2M + 3)⇥ 1, and P is a (2M + 3)⇥ (2M + 3) matrix
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THE PROBLEM IN A NUTSHELL

Looking for absolute robot pose

Looking for absolute landmark positions

But only relative measurements of landmarks are available
11

T H E  S L A M  C H A L L E N G E  I N  A  N U T S H E L L



WHY SLAM IS A HARD PROBLEM

Robot path and map are both
unknown

Errors in map and pose estimates
are correlated

The mapping between
observations and landmarks is
unknown

Data Association: Selecting
wrong data associations can be
disastrous (divergence)
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W H Y  S L A M  I S  A  H A R D  P R O B L E M

• Robot path and the landmark 
map are both unknown 

• Errors in map and pose estimates 
are correlated  

• Mapping between observations 
and landmarks is unknown 

• Data Association: Selecting 
wrong data association can be 
disastrous (divergence) 
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S TAT E  V E C T O R  A N D  C O VA R I A N C E  M AT R I XTHE SLAM STATE VECTOR AND COVARIANCE MATRIX

The state vector and the covariance matrix: the state vector includes both the robot’s
generalized coordinates and landmarks’ coordinates; said n = (i � 1) the number of
discovered landmarks at step k:
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THE SLAM MOVIE

Robot’s pose prediction using the
odometry model

Observe the environment while moving:

1 Get a landmark observation

2 Perform a measurement prediction
using the map (being) created

Compare predicted and observed
measure to perform data association
(is a new landmark?) and compute
innovation

Update predictions for robot pose and

landmark’s position
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THE EKF EQUATIONS FOR ODOMETRY-BASED SLAM?

Combination of all previous equations from the different cases seen so far

1 Robot’s pose prediction using the odometry model: EKF based on the linearization of the
motion equations using the Jacobians Fk⇠ and Fkv computed previously, and the new
(constant) Jacobian Fk�, to reduce the motion equation to a linear form of the type
⇠k+1 = Ak⇠k + ⌫k ! EKF where non linearity refers to process dynamics

2 Robot’s pose prediction correction after the sensory observation of a landmark, whose
position is reported on a map: EKF based on the linearization of the observation equations
using the Jacobians Hk⇠ and Hkw to reduce the observation equation to a linear form of the
type zk+1 = Ck⇠k + wk ! EKF where non linearity refers to measurement process

3 Landmark’s position estimation using robot’s sensory data and known pose (map building):
EKF based on the linearization of the observation equations using the Jacobians Lk⇠ and Lkw
to reduce the observation equation to a linear form of the type zk+1 = Ck⇠k + wk ! EKF
where non linearity refers to measurement process

4 State expansion after observing a previously unseen landmark: EKF based on the linearization
of the process dynamics using the Jacobian Qkz to reduce the process equation to a linear
form of the type ⇠k+1 = Ak⇠k + ⌫k ! EKF where non linearity refers to system evolution 15
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State equation for robot motion, including also the � in the state vector:
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J A C O B I A N S

THE JACOBIANS FOR SLAM

The Jacobians Fk⇠, and Fk⌫ of fk(), to be evaluated in (⇠k = ˆ⇠k|k , ⌫k = 0), for the
linearization of the motion dynamics, which is robot’s motion since landmarks do not move
(Jacobians are (re)computed because of the new sub-matrix Fk⇠�n in the Fk⇠ Jacobian):
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THE JACOBIANS FOR SLAM
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THE JACOBIANS FOR SLAM

The Jacobians Ok⇠ and Okw of ok() for the linearization of the observation model for both
localization and mapping, to be evaluated in (⇠k = ˆ⇠k+1|k ,wk = 0). The Jacobians are
derived from the combination of the Jacobians Hk⇠ and Lk⇠ computed for the
localization-only and mapping-only cases:
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The Jacobian Qk⇠ of qk() for the linearization of the state dynamics when a new landmark is
observed (state expansion with landmark initialization); Qk⇠ is obtained as in the
mapping-only case + the fact that now G⇠ =
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THE JACOBIANS FOR SLAM

The Jacobians Ok⇠ and Okw of ok() for the linearization of the observation model for both
localization and mapping, to be evaluated in (⇠k = ˆ⇠k+1|k ,wk = 0). The Jacobians are
derived from the combination of the Jacobians Hk⇠ and Lk⇠ computed for the
localization-only and mapping-only cases:
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The Jacobian Qk⇠ of qk() for the linearization of the state dynamics when a new landmark is
observed (state expansion with landmark initialization); Qk⇠ is obtained as in the
mapping-only case + the fact that now G⇠ =

⇥
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⇤
is non-zero since ⇠R is part of the

state vector, making G⇠R 6= 000:
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The Jacobians Ok⇠ and Okw of ok() for the linearization of the observation model for both
localization and mapping, to be evaluated in (⇠k = ˆ⇠k+1|k ,wk = 0). The Jacobians are
derived from the combination of the Jacobians Hk⇠ and Lk⇠ computed for the
localization-only and mapping-only cases:
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EKF FOR SIMULTANEOUS LOCALIZATION AND MAPPING

The SLAM EKF equations:

At every time step k:

ˆ⇠k+1|k = fk(ˆ⇠k|k , 000;�Sk ,�✓k)

Pk+1|k = Fk⇠PkFk⇠
T
+ Fk⌫VkFk⌫

T

When a new landmark i is observed:
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At every time step k + 1 a landmark i is observed

ˆ⇠k+1 = ˆ⇠k+1|k + Gk+1(zk+1 � ok(ˆ⇠k+1|k , 000))
Pk+1 = Pk+1|k � Gk+1Ok⇠Pk+1|k
Gk+1 = Pk+1|kOk⇠

TS�1k+1
Sk+1 = Ok⇠Pk+1|kOk⇠

T
+ OkwWk+1Okw

T

The Kalman gain matrix G multiplies innovation from the landmark observation, a 2-vector,
so as to update every element of the state vector: the pose of the vehicle and the position of
every map feature.
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SLAM PERFORMANCE
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SLAM PERFORMANCE: COVARIANCE VS. TIME
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