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PROBLEM: WHAT |IF THE NUMBER OF LANDMARKS IS UKNOWN?

4 Usually, both the locations and the number M of the landmarks

*
* * existing in the environment are not known a priori
* *
* ok

>

Where(?) the M(?) landmarks?

The state vector §, must be incrementally expanded

by two new coordinate components [A, /liy ] each

State vector § of the EKF: time a new landmark A' is observed
(Coordinates of the M landmarks)

Formally, the expansion of the state vector §, amounts to the following process

dynamics (before process dynamics was stationary), implemented through the use of
the auxiliary (non linear!) function q():
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THE STATE EXPANSION FUNCTION
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o The vector function g(x, y, 8, z), which is the inverse of the observation function

¢(), gives the measured coordinates (in the world frame) of the observed landmark.

e Inputs: known vehicle pose [x y 0]7 , sensor observation z = [p B]' at time step k.

o g() gets the local robot measure and outputs the world coordinates of the

observed landmark: v
LA Y, Landmark;
Rk (feature vector)
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g(x,y.0,z) =




EXPANDING BOTH STATE AND COVARIANCE MATRIX

o After the new landmark i has been observed, at step kK + I, the expanded state vector:
PR [Sk X} — [>\§ A; AN NN, A A’y}
e Without losing generality, let's assume that the landmarks are ordered incrementally in
the state vector — landmark i/ is the i-th discovered landmark:
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THE EXPANDED COVARIANCE MATRIX

» What are the covariance values for the new predicted coordinates (!, 5\;)?

The estimation error associated to the measured coordinates of the newly observed
landmark corresponds to the error associated to the sensing measure

Y

The covariance for the estimates (A}, A!) is the same as the
covariance matrix W, modeling the sensing errors

2 yixni = Wk

» What are the cross-covariance values between the new predicted coordinates and those
previously in the state?

Cross-covariances are all 0 in the considered model:
the observation of one landmark does not provide information about another landmark

» The resulting expanded covariance matrix:
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PREDICTION UPDATE
FOLLOWING A STATE EXPANSION

o The process dynamics defined through q() is not linear — the Jacobian of q()
needs to be computed to define the EKF process updating equations based on

the expanded state and covariance

¢ i Ekk | A%
k|k
Gk (Ek|k+ Zk+1: Xks Yk, Ok) = | = | Xk + Pk cos(6x + Bk) | =

g(xkvykvekvzk-’rl) . .
] ~ [ Yk t+ prsin(8k + Bk) | Nex.




JACOBIAN MATRIX
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JACOBIANS FOR LINEARIZATION OF qg«()

» Said n= (i — 1), the number of landmarks before the current new observation, the
dimension of the covariance matrix before the expansion is 2n x 2n, while the dimension of
the Jacobian Q is (2n+2) X (2n+ 3 + 2)

» Q¢ Is evaluated at the current observation z, 1, therefore is also referred to as Q. ,

» The Jacobian Q¢ of qx() for the linearization of the state dynamics in the case of state
expansion can be also expressed In a more compact form:
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» The Jacobian Q¢ allows to linearly transform (expand) the covariance matrix P, when
adding a new landmark to the state vector:
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which results in an expanded 2(n+ 1) X 2(n 4+ 1) matrix



EKF INCLUDING STATE EXPANSION

» The Jacobians Ly¢ and L, of £(), computed before, accounts for the linearization of the

observation model when an already discovered landmark is observed (x, and y, are
parameters):
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» The complete EKF equations:
When a new landmark i is observed: At every time step kK + 1 a landmark i I1s observed
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SOLVING LOCALIZATION AND MAPPING TOGETHER

» The previous derivation was based on the fact that robot's localization was perfect

» Since this is not (usually) the case, let’s solve the joint problem:

Simultaneous Localization and Mapping (SLAM)

T he state vector needs to include also robot’'s coordinates, since also robot’'s pose
needs to be estimated
_ 1 31 32 2 M yM1T
= [X,y,G,AX Ny O A oo A >\y]

¢ has now dimension (2M + 3) x 1, and P is a (2M + 3) x (2M + 3) matrix




THE SLAM CHALLENGE IN A NUTSHELL

Observation
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Mobile Vehicle

Global Reference Frame

» Looking for absolute robot pose

» Looking for absolute landmark positions

» But only relative measurements of landmarks are available

Vehicle-Feature Relative
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WHY SLAM IS A HARD PROBLEM

e Robot path and the landmark
map are both unknown

e Errors in map and pose estimates
are correlated

e Mapping between observations

and landmarks is unknown

e Data Association: Selecting

wrong data association can be
disastrous (divergence)

Robot pose
uncertainty
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STATE VECTOR AND COVARIANCE MATRIX

» T he state vector and the covariance matrix: the state vector includes both the robot’s

generalized coordinates and landmarks’ coordinates; said n = (i — 1) the number of
discovered landmarks at step k:
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and the resulting covariance matrix (omitting the index k) is:
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THE SLAM MOVIE

» Robot’s pose prediction using the
odometry model

» Observe the environment while moving:

Get a landmark observation

Perform a measurement prediction
using the map (being) created

» Compare predicted and observed
measure to perform data association
(is a new landmark?) and compute
innovation

» Update predictions for robot pose and
landmark’s position

14




EKF EQUATIONS FOR SLAM?

Combination of all equations from previous cases! J

Robot’s pose prediction using the odometry model: EKF based on the linearization of the
motion equations using the Jacobians Fy¢ and Fy, computed previously, and the new
(constant) Jacobian Fi), to reduce the motion equation to a linear form of the type
Exi1 = A&k + v — EKF where non linearity refers to process dynamics

Robot's pose prediction correction after the sensory observation of a landmark, whose
position is reported on a map: EKF based on the linearization of the observation equations

using the Jacobians Hy¢ and Hy,, to reduce the observation equation to a linear form of the
type zx11 = Créx + wix — EKF where non linearity refers to measurement process

Landmark’s position estimation using robot's sensory data and known pose (map building):
EKF based on the linearization of the observation equations using the Jacobians Ly and Ly,
to reduce the observation equation to a linear form of the type zx11 = Créx + wx — EKF

where non linearity refers to measurement process

State expansion after observing a previously unseen landmark: EKF based on the linearization

of the process dynamics using the Jacobian Q«, to reduce the process equation to a linear
form of the type &x11 = A&k + vk — EKF where non linearity refers to system evolution 15




STATE AND OBSERVATION EQUATIONS FOR SLAM

» State equation for robot motion, including also the A in the state vector:

X (ASy + v7) cos(6k + % + v9)]
Yk (ASk + v7)sin(6x + % + uﬁ
Qk A@k + l/i
At each step ki &xi1 = N + 5 = £ (&x, Vi, ASy, ABy)
k
Al L 0 ]
» State equation for state expansion, when a previously unseen landmark 7/ is observed:
¢ i Ex |
. k
§ri1 = = | Xk + ok cos(Ox +Bk) | = qr(€k. Zk+1)
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» Observation model, which is unchanged from the previous scenario, but now
Ay A;(y, Xk, Yk, Ok are variables, such that z,, 1 can be seen as the overlapping of the

functions h,() and £x() that have been considered for the localization-only and mapping-only
cases before:
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JACOBIANS

» The Jacobians Fy¢, and Fy, of f(), to be evaluated in (§ = €k|k, v, = 0), for the
linearization of the motion dynamics, which is robot's motion since landmarks do not move
(Jacobians are (re)computed because of the new sub-matrix Fye,, in the Fie Jacobian):
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JACOBIANS FOR ROBOT POSE
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JACOBIANS FOR THE OBSERVATION MODELS

(LOCALIZATION AND MAPPING)

» The Jacobians Oy¢ and Oy, of ox() for the linearization of the observation model for both
localization and mapping, to be evaluated in (§x = §k+1|k, w, = 0). The Jacobians are
derived from the combination of the Jacobians Hy¢ and Ly,¢ computed for the
localization-only and mapping-only cases:
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JACOBIANS FOR LANDMARK STATE EXPANSION

¢ I Exik | Xiy
K|k
qk(£k|k, Zi+1, Xkr Yk Qk) == = [ Xk + Pk cos(Gk ‘|‘,Bk) —
9(Xk, Yk, Ok, Zk+1) | .
| Yk + i sin(6k + Bk) | Ak
Aot
gx
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» The Jacobian Q¢ of qx() for the linearization of the state dynamics when a new landmark is
observed (state expansion with landmark initialization); Q¢ is obtained as in the
mapping-only case + the fact that now G¢ = [GﬁR ng] IS non-zero since &g is part of the

state vector, making G¢, # O:

l342mx(3+2n) 0(3+2n)x2
U= G Opon G :
ER Xen Z £k|k,zk,W:O
c 8gx |1 0 —pksin(Ox + Br) - 8gx  |cos(0k +Bk) —pksin(Ox + Br)
TS 0 1 pkcos(fk + Bk) Y sin(0x +Bk) ok cos(Ok + Bk)
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EKF EQUATIONS FOR SLAM

» The SLAM EKF equations:

When a new landmark i is observed:

At every time step k:

¢ 3 £ = qx (Exiks Zkt1)
Exrik = fu (i, 05 ASy, Aby) k+1lk |

Pk|k 0
Pi i1k = FrePiFre’ + FroVicFi, ' Piiik = Qe { 0 W } Que’
k

At every time step kK + 1 a landmark i is observed

€1 = Exrk + Grr1(zk1 — ok (€xqpx, 0))
Pii1 = Pryijk — Ge10ke Ptk

Git1 = Per1kOre’ Si}
Skt1 = OkgPey1xOke” + 0ruWii1010, "

» The Kalman gain matrix G multiplies innovation from the landmark observation, a 2-vector,
so as to update every element of the state vector: the pose of the vehicle and the position of
every map feature.
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SLAM PERFORMANCE IN SIMULATION

> Z
S — N\
. 10 0
- T T T NI - - N g
o © _ ew E:
=10 -5 0 5 10

22



COVARIANCE VS
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