

16-311-Q Introduction to Robotics Fall'17

LECTURE 28:
MULTI-ROBOT SYSTEMS 1

INSTRUCTOR:
GIANNI A. DI CARO

جامکۃ کارنیجی میلوں فی قطر Carnegie Mellon University Qatar

MULTI-ROBOT SYSTEMS

PROS AND CONS

- Some tasks needs 2 or more robots
- Linear / superlinear speedups
- Parallel and spatially distributed system
- Redundancy of resources → Robustness
- A robot ecology is being developed ...

- Environment inherently *dynamic*
- Complex g-local interactions
- Access shared resources
- Need for (some) coordination
- Increased (state) uncertainty
- Communication issues
- Costs / Benefits ratio
- Practical problems xN

Homogeneous system: members are interchangeable

Heterogeneous system: different members have different skills

Loosely coupled:
Being together is an advantage

but not a strict necessity

Speedup

Tightly coupled:

They need each other to successfully complete the team task Cooperation, Coordination

NON-COOPERATIVE VS. COOPERATIVE

- Non cooperative
- Maximization of individual utilities
- Equilibrium concepts
- Social welfare?

- Cooperative
- Optimization of individual utilities aiming to maximize a global utility
- Optimization concepts
- Social welfare!

Cooperative (Benevolent):
Agents are working together,
forming a team

Competitive:

Competing for resources and utilities, adversarial scenario

Decentralized/Distributed control

Core Issues: Coordination and Planning

Decision / Action making

Implicit

Motion control

(ONE) CENTRAL PROBLEM: MULTI-AGENT/ROBOT TASK ALLOCATION (MRTA)

Team design team composition Mission planning Task allocation task assignments Local task planning subtasks or actions Scheduling schedule Execution

(tasks, agents)

EXAMPLE: CUSTOMER SERVICE

Routing (performance metric + constraints)

Customer Assignment (performance metric + constraints)

MRTA: A FORMAL DEFINITION (OPT)

Given:

- \checkmark A set of tasks, T
- ✓ A set of robots, R
- \checkmark \Re = 2^R is the set of all possible robot sub-teams E.g., $(r_1=0,\,r_2=0,\,r_3=1,r_4=0,r_5=1)$
- ✓ A robot sub-team utility (or cost) function: U_r : $2^T \times \Re \to \mathbb{R} \cup \{\infty\}$ (the utility/cost sub-team r incurs by handling a subset of tasks)
- ✓ An allocation is a function $A: T \to \Re$ mapping each task to a subset of robots. \Re^T is the set of all possible allocations

Find:

The allocation $A^* \in \mathbb{R}^T$ that maximizes (minimizes) a global, teamlevel utility (objective) function $\mathcal{U}: \mathbb{R}^T \to \mathbb{R} \cup \{\infty\}$

EXAMPLE: SURVEILLANCE

INTENTIONAL VS. EMERGENT

- Explicit/Intentional TA: robots explicitly cooperate and tasks are explicitly assigned to the robot
- Implicit / Emergent TA: tasks are assigned as the result of <u>local</u> <u>interactions</u> among the robots and with the environment

UTILITY FUNCTION

Utility function for a pair (robot, task)

$$U_{rt} = \left\{ egin{array}{ll} Q_{rt} - C_{rt} & ext{if } r ext{ is capable of executing } t \\ -\infty & ext{otherwise} \end{array}
ight.$$

- Q and C are somehow estimates of Quality and Cost that account for all uncertainties, missing information, ...
- Optimal allocation: Optimal based on all the available information
 → Rational decision-making
- For some problems, an agent's (sub-team's) utility for performing a task is independent of its utility for performing any other task.
- In general, this is not always true
- Our definition fails capturing dependencies

Allocation Type

Instantaneous assignment (IA) versus time-extended assignment (TA)

(Gerkey and Mataric, 2004)

Assumption: Individual tasks can be assigned independently of each other and have independent robot utilities

WHY A TAXONOMY?

- A lot of "different MR scenarios"
- A lot of "different" MRTA methods
- Analysis and comparisons are difficult!

- Taxonomy → Single out core features of a MRTA scenario
- Allow to understand the complexity of different scenarios
- Allow to compare and evaluate different approaches
- A scenario is identified by a 3-vector (e.g., ST-MR-TA)

ST-SR-IA: LINEAR ASSIGNMENT

If |R|=|T| the problem becomes a linear assignment and a polynomial-time solution does exist!

$$\max \quad \sum_{r=1}^{|R|} \sum_{t=1}^{|T|} U_{rt} x_{rt} \qquad \qquad \text{The Hungarian algorithm has complexity O(|T|^3)}$$

$$s.t. \quad \sum_{r=1}^{|R|} x_{rt} = 1 \qquad t = 1, \dots |T| \qquad \text{In a centralized architectule with each robot sending in the properties of the controlled of the expression of the end of the end$$

The Hungarian algorithm has complexity $O(|T|^3)$

In a centralized architecture, with each robot sending its |T| utilities to the controller,

Assignment with hundreds of robots in < 1s

ST-SR-IA: LINEAR ASSIGNMENT

- What if |R| ≠ |T| ?
- To preserve polynomial time solution, "dummy" robots or tasks can be included in a two-step process
- If |R| < |T|: (|T|-|R|) dummy robots are added and given very low utility values with respect to all tasks, such that that their assignment will not affect the optimal assignment of |R| tasks to the "real" robots
- The remaining |T|-|R| tasks (i.e., assigned to the dummy robots) can be optimally assigned in a second round, which will likely feature # of robots greater than the # of tasks
- If |T| < |R|: Dummy tasks with very low, flat, utilities are introduced such that their assignment will not affect the assignment of real tasks

ST-SR-IA: ITERATED ASSIGNMENT

- Not always full/final task information and utility is available since the beginning of the operations
- How to deal with <u>new / revised evidence (utility)</u> in an *iterative* scheme?
- Recompute from scratch to solve the assignment, or, adapt greedily:

Broadcast of Local Eligibility (BLE, 2001), worst-case 50% opt

- 1. If any robot remains unassigned, find the robot-task pair (i, j) with the highest utility. Otherwise, quit.
- Assign robot i to task j and remove them from consideration.
- 3. Go to step 1.
- 2-competitive: $U(BLE) \ge c \cdot U(OptOffline) a$, c = 2
- L-ALLIANCE (1998) can *learn* the best assignments over time

EXAMPLES: CMOMMT, SOCCER

Cooperative multi-robot observation of multiple moving targets (MT)

- Robots are interchangeable → it is often advantageous to allow any player to take on any role within the team based on scenarios
- Iterated assignment problem in which the robots' roles are periodically reevaluated, usually at a frequency of about 10 Hz.