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I N S TA N TA N E O U S  C E N T E R  O F  R O TAT I O N

• If the there is no translation, the ICR is the same as the center of rotation: the velocity 
of {R} is zero in {W} and accordingly, the ICR coincides with {R}.  

• The position vector of the ICR is perpendicular to vR, the velocity vector in {R}. More 
in general, selected a point A in the body, the position vector (ICR — A)  is 
perpendicular to the  velocity vector in A 

• → If we know the velocity at two points of the body, A and B, then the location of 
ICR can be determined geometrically as the intersection of the lines which go through 
points A and B and are perpendicular to vA and vB 

• When the angular velocity, 𝛚, is very small, the center of rotation is very far away; 
when it is zero (i.e. a pure translation), the center of rotation is at infinity. 

Velocity vector of P in {W}: WvP =
WvR +

RvP + ! ⇥R rP = WvR + ! ⇥R rP

Point ICR with 0 velocity in {W}: Wv ICR = 0 =
WvR + ! ⇥R r ICR

multiplying by �! and rearranging: Rr ICR =
1

!2
(! ⇥ WvR)
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G E O M E T R I C  C O N S T R U C T I O N ,  M U LT I - PA R T S  B O D I E S



4

I C R  F O R  W H E E L S

Vector 
composition 
at each point

𝝎

vE = 2vC

Pure rolling:  
rotation + translation

C

vC = !rC

R

E

vR = 0

~vP = ~vR + ~! ⇥ ~rRP

P

Pure translation

C

vC = !rC

rC

• Wheel’s motion can instantaneously be seen as a pure rotation about an axis, normal 
to the plane of motion, the axis of instantaneous rotation, or of zero velocity. The 
point where the axis intersects the plane of motion is the ICR  

• → Rigid body’s motion happens along a circumference centered in the ICR, that 
has zero velocity 

• The farther the distance from the ICR, proportionally the larger is the velocity

Pure rotation

~vT = ~! ⇥ ~r

C

~vC = ~! ⇥ ~rC = 0

𝝎
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F R O M  W H E E L S  T O  R O B O T  C H A S S I S
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VL= r𝜔L

VR(t)

VL(t)

l

l

ICR(t)

ω(t)
V(t)

• No side-motion constraints: 
no motion along the line ⊥  
to the plane of each wheel 

• For each wheel, (v — ICR) 
vector overlaps with the no 
side-motion line 

•  At any time t, ICR is the 
intersection of all zero 
motion lines from wheels 
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R O B O T ’ S  I N S TA N TA N E O U S  C E N T E R  O F  R O TAT I O N  

✦ The ICR is the point around which each 
wheel makes a circular course, with a 
different radius, depending on wheel’s 
position on the chassis

✦ ICR defines a zero motion line 
drawn through the horizontal 
axis perpendicular to the plane 
of each wheel on the chassis

✦ At any time t, the robot reference point 
(between the wheels in the figure) moves 
along a circumference of radius R with 
center on the zero motion line, the center 
of the circle is the ICR 

✦ The ICC changes over time as a function 
of the individual wheel velocities, and, in 
particular , of their relative difference
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I C C  F O R  D I F F E R E N T  D R I V I N G  M O D E S

For a holonomic robot the 
ICC it’s in the  

center of the robot 

The position of the ICC depends on the instantaneous wheels’ motion, that 
determines the instantaneous angular velocity 𝝎 of the robot around the ICC



8

N O  I C C ,  N O  M O T I O N  ( W I T H O U T  S L I P PA G E )



𝜹M = (1+1) = 2

𝜹M = (2+0) 

9

M O B I L E  R O B O T  M A N E U V E R A B I L I T Y  A N D  I C C / I C R

• In the first three cases, the ICR cannot range anywhere on the plane, but 
it must lie on a predefined line with respect to the robot reference frame

𝜹M = (1+1) 

𝜹M = (2+0) = 2

𝜹M = (1+1) = 2

𝜹M = (1+2) = 3

• For any robot with 𝜹M = 2, the ICR is always constrained on a line 
• For any robot with 𝜹M = 3, the ICR can be set to any point on the plane
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M A N E U V E R A B I L I T Y,  D O F,  N O N  H O L O N O M I C  R O B O T

• Maneuverability (𝜹M): # of control degrees of freedom for realizing motion         
(changing its pose) that a robot has available  

• Motion degrees of freedom can be manipulated directly (𝜹m), through wheels’ velocity,   
and indirectly(𝜹s) through steering configurations and moving 

• Configuration space 𝓒: the space of the m-dimensional generalized configuration 
coordinates representing all possible robot configurations (robot’s structure + environment)  

• DOFs of the robot: # of independent coordinates (out of m) of the configuration space               
→  # of parameters the robot can independently act upon to change its configuration  
(e.g., x,y,𝜃), which depends on the presence or not of geometric / holonomic constraints 

• DOFs of the workspace 𝓦: DOFs (# of independent coordinates) of the  embedding 
operational environment that the robot can reach  (e.g., 3 DOFs for a robot in 2D space) 

• DOF(workspace) ⋛ DOF(robot) 
• How the robot is able to move from one configuration to another in the configuration space? 

What type of paths are possible? What type of trajectories? 
• We need to relate maneuverability to DOFs …. →

Let’s sum up all notions and results so far:
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M A N E U V E R A B I L I T Y,  D O F,  N O N  H O L O N O M I C  R O B O T

• Generalized velocity space 𝓥: the m-dimensional space of the time derivatives of 
the generalized coordinates of the configuration space (e.g., dx/dt, dy/dt, d𝜃/dt) 

• DOFs of the generalized velocity space: # of independent velocity coordinates 
(out of m) of the generalized velocity space →  # of independent velocity parameters 
that the robot can control to change its motion, which depend on the presence or not 
of kinematic / non holonomic constraints 

• Admissible velocity space: given the kinematic constraints, the n-dimensional 
subspace of 𝓥 (n ≤ m) that describes the independent components of motion that 
the robot can directly control through wheels’ velocities 

• Differential degrees of freedom (DDOF): The number n of dimensions in the 
velocity space of a robot → the number of independently achievable velocities  

DDOF = 𝜹m        DDOF ≤ 𝜹M ≤ DOF 

• DOF governs the robot’s ability to achieve various poses in 𝓒 
• DDOF governs a robot’s ability to achieve various paths in 𝓒
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H O L O N O M I C  R O B O T S

Holonomic robot: Iff the controllable degrees of freedom are 
equal to total degrees of freedom: DDOF = DOF(𝓦)

• An holonomic robot can directly control all velocity components 
• The presence of kinematic constraints reduces the capability to freely 

execute paths and decreases the DDOFs, making them less than DOFs 
• An omnidirectional robot, that has no kinematic constraints (no standard 

wheels), is an example of holonomic robot: 𝜹M = 3 + 0 = DDOF = DOF

Lateral forces,  
skidding

Non holonomic constraints are 
not necessarily bad 

(for stability)
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D E G R E E  O F  M A N E U V E R A B I L I T Y  V S .  D O F S

What about steering freedom?

• 𝜹M = 3 ⇒ ability to freely manipulate the ICR 

• Doesn’t this mean that the robot is unconstrained selecting its paths? 
• Yes! But  𝜹M = 3 + 0 ≠ 1 + 2 (e.g., two-steer bicycle) 
• This has an impact in the context of trajectories rather than paths 
• Trajectory = path + time (m+1 dimensions)

Omni vs. Two-steer making trajectories …
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T R A J E C T O R Y  M A K I N G

• A robot has a goal trajectory in which 
the robot moves along axis XI at a 
constant speed of 1 m/s for 1 second. 

• Wheels adjust for 1 second. The robot 
then turns counterclockwise at 90 
degrees in 1 second.  

• Wheels adjust for 1 second. Finally, 
the robot then moves parallel to axis 
YI for 1 final second. 

acceleration = ∞

Arbitrary 
trajectories are 
not attainable! 

(changes to 
internal DOFs are 

required and  
take time)
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D O F S  F O R  D I F F E R E N T  R O B O T S
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D I F F E R E N T I A L  ( * )  V E H I C L E S  

Differential steering (vehicle, robot) 
two standard wheels mounted on a single axis are independently powered and controlled,  

providing both drive and steering functions through the motion difference between the wheels

total wheel pairs can be more than two, making control more complex

Differential drive
In automotive engineering, it refers to 
the presence of a differential gear or 
related device to transfer different 

motion to the steering wheels on a same 
axis (e.g., frontal wheels of a normal car) 

Additional  
(passive) wheels  
for stability …Any type  

chassis …

What are the kinematic equations?
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F R O M  W H E E L S  T O  R O B O T  C H A S S I S
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At any specific time instant t:

Controls!
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C O M P O S I T I O N  O F  A N G U L A R  V E L O C I T I E S

P

XR

YR

'̇1 [rad/s]
C1

!1 =
r '̇1
2l

If only the right, C1 wheel spins (forward), the 
contribution to the angular velocity of P:

ω1

P
l

l

XR

YR

C2

'̇2 [rad/s] ω2

!2 = �
r '̇2
2l

If only the left, C2 wheel spins (forward), the 
contribution to the angular velocity of P:

l

l
r

The contributions of each wheel to the angular velocity in P 
can be computed independently and added up (signed)
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C O M P O S I T I O N  O F  L I N E A R  V E L O C I T I E S

• The linear velocity of a point 
P on the rigid chassis is 
tangential to the circular 
path followed by the point, 
hence, is also termed a 
tangential velocity

P

l

r XR

YR

'̇1 [rad/s]

'̇2 [rad/s]
l

C1

~v
VR(t)

VL(t)

l

l

ICR(t)

ω(t)

V(t)

P

If only the right wheel spins (forward), the linear velocity of C1 is 
r   1, that of C2 is 0, and that of P is half of that of C1, since 
linear velocity scales linearly with the radius (centered in C2). An 
analogous reasoning applies when C2 is the only spinning wheel 

φ. 

The contributions of each wheel to the tangential velocity in P can 
be computed independently and added up, each divided by 2
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S P E C I A L  C A S E S  F O R  D I F F E R E N T I A L  M O T I O N

VR(t)

VL(t)

l

l

ICR(t)

ω(t)

V(t)R(t)

P
R

L

• VL = VR  ➔  R = ∞, and there is effectively no 
rotation, ω = 0: Forward linear motion in a straight line 

• VL = -VR  ➔  R = 0, meaning that it coincides with P, 
and ω = -V/l: Rotation about the midpoint of the 
wheel axis (in place rotation) 

• VL = 0  ➔ R = l	(in the center of L), ω = VR/2l: 
Counterclockwise rotation about the left wheel 

• VR = 0  ➔ R = -l	(in the center of R),	ω = -VL/2l: 
Clockwise rotation about the right wheel

Do you spot any potential practical issues?
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R E F E R E N C E  F R A M E S  A N D  P O S I T I O N  O F  T H E  I C R

VR(t)

VL(t)

l

ICR(t)

ω(t)

V(t)

P

XR

YR

XW

YW

𝜽l

x

y

yICR

xICR

R

Robot’s local reference frame {R} is in coord (x,y) and 
oriented at an angle 𝜽 wrt to the world reference frame {W} 

RICR = [0 R]T
WICR = W𝝃R . RICR
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R O B O T  P O S E  E V O L U T I O N  A S  A  F U N C T I O N  O F  I C R  

At a time t, an instantaneous motion of duration 𝜹t 
results in an infinitesimal change in orientation equal 
to 𝛥𝜃, and in an infinitesimal displacement 𝛥S:  

what is the robot pose W𝝃R  at time (t + 𝜹t)?

The ICR will not change, and the new pose is the 
result of a rotation 𝛥𝜃 = ω𝜹t of the robot about the 
ICR (ω is constant during the infinitesimal interval)

(1) translation of the ICR at {W} origin, (2) rotation of 𝛥𝜃, (3) translation back to the ICR
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M O T I O N  E Q U AT I O N S  F O R  A  R O B O T  R O TAT I N G  
A B O U T  I T S  I C R

Motion of a robot rotating a distance R about its ICR with an angular velocity of ω
(1) translation of the robot, positioning the ICR at {W} origin 
(2) rotation in place of 𝛥𝜃 = ω𝜹t  
(3) translation back of the ICR at its initial position

R

Based on the velocity inputs to the right and left wheels, robot’s pose can be computed

Equation valid 
for any  

mobile robot!
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F O R WA R D  K I N E M AT I C S  E Q U AT I O N S
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F O R WA R D  K I N E M AT I C S  E Q U AT I O N S

To obtain future poses over time-extended intervals, it is necessary to provide initial 
conditions, specify geometry parameters, assign the linear and angular velocity profiles v(t) 
and ω(t), and integrate over time (which might not be obvious/easy)

In the specific case of a two-wheeled 
differential robot, v(t) and ω(t) at 
the reference point P on the chassis 
are functions of the Left and Right 
speeds issued to the Left and Right 
wheel, respectively: 
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