

16-311-Q INTRODUCTION TO ROBOTICS

LECTURE 7: DOFs vs. Maneuverability Kinematics Equations

INSTRUCTOR: GIANNI A. DI CARO

INSTANTANEOUS CENTER OF ROTATION

- If the there is no translation, the ICR is the same as the center of rotation: the velocity of {R} is zero in {W} and accordingly, the ICR coincides with {R}.
- The position vector of the ICR is perpendicular to v_R, the velocity vector in {R}. More in general, selected a point A in the body, the position vector (ICR A) is perpendicular to the velocity vector in A
- \rightarrow If we know the velocity at two points of the body, **A** and **B**, then the location of ICR can be determined geometrically as the intersection of the lines which go through points **A** and **B** and are perpendicular to v_A and v_B
- When the angular velocity, ω , is very small, the center of rotation is very far away; when it is zero (i.e. a pure translation), the center of rotation is at infinity.

GEOMETRIC CONSTRUCTION, MULTI-PARTS BODIES

ICR FOR WHEELS

- Wheel's motion can <u>instantaneously</u> be seen as a pure rotation about an axis, normal to the plane of motion, the **axis of instantaneous rotation**, or **of zero velocity**. The point where the axis intersects the plane of motion is the ICR
- \rightarrow Rigid body's motion happens along a circumference centered in the ICR, that has zero velocity
- The farther the distance from the ICR, proportionally the larger is the velocity

FROM WHEELS TO ROBOT CHASSIS

ROBOT'S INSTANTANEOUS CENTER OF ROTATION

The ICR is the point around which each wheel makes a circular course, with a different radius, depending on wheel's position on the chassis

 ICR defines a zero motion line drawn through the horizontal axis perpendicular to the plane of each wheel on the chassis

- At any time t, the robot reference point (between the wheels in the figure) moves along a circumference of radius R with center on the zero motion line, the center of the circle is the ICR
- The ICC changes over time as a function of the individual wheel velocities, and, in particular, of their relative difference

ICC FOR DIFFERENT DRIVING MODES

The position of the ICC depends on the instantaneous wheels' motion, that determines the instantaneous angular velocity ω of the robot around the ICC

NO ICC, NO MOTION (WITHOUT SLIPPAGE)

MOBILE ROBOT MANEUVERABILITY AND ICC/ICR

- In the first three cases, the ICR cannot range anywhere on the plane, but it must lie on a predefined line with respect to the robot reference frame
- For any robot with $\delta_{M} = 2$, the ICR is always constrained on a line
- For any robot with $\delta_{\rm M}=$ 3, the ICR can be set to any point on the plane

MANEUVERABILITY, DOF, NON HOLONOMIC ROBOT

Let's sum up all notions and results so far:

- Maneuverability (δ_{M}): # of *control* degrees of freedom for realizing motion (changing its pose) that a robot has available
- Motion degrees of freedom can be manipulated **directly** (δ_m) , through wheels' velocity, and **indirectly** (δ_s) through steering configurations and moving
- Configuration space C: the space of the m-dimensional generalized <u>configuration</u> coordinates representing all possible robot configurations (robot's structure + environment)
- DOFs of the robot: # of independent coordinates (out of m) of the configuration space
 # of parameters the robot can independently act upon to change its configuration
 (e.g., x,y,θ), which depends on the presence or not of geometric / holonomic constraints
- **DOFs of the workspace** \mathscr{W} : DOFs (# of independent coordinates) of the embedding operational environment that the robot can reach (e.g., 3 DOFs for a robot in 2D space)
- DOF(workspace) ≥ DOF(robot)
- How the robot is able to <u>move</u> from one configuration to another in the configuration space? What type of <u>paths</u> are possible? What type of <u>trajectories</u>?
- We need to relate maneuverability to DOFs $\ldots \rightarrow$

MANEUVERABILITY, DOF, NON HOLONOMIC ROBOT

- Generalized velocity space V: the m-dimensional space of the <u>time derivatives</u> of the generalized coordinates of the configuration space (e.g., dx/dt, dy/dt, dθ/dt)
- DOFs of the generalized velocity space: # of independent velocity coordinates
 (out of m) of the generalized velocity space → # of independent velocity parameters
 that the robot can control to change its motion, which depend on the presence or not
 of kinematic / non holonomic constraints
- Admissible velocity space: given the kinematic constraints, the *n*-dimensional subspace of 𝒴 (n ≤ m) that describes the <u>independent components of motion</u> that the robot can directly control through wheels' velocities
- Differential degrees of freedom (DDOF): The number *n* of dimensions in the velocity space of a robot → the <u>number of independently achievable velocities</u>

$\mathsf{DDOF} = \delta_{\mathsf{m}} \qquad \mathsf{DDOF} \le \delta_{\mathsf{M}} \le \mathsf{DOF}$

- DOF governs the robot's ability to achieve various poses in ${\mathscr C}$
- DDOF governs a robot's ability to achieve various paths in *C*

HOLONOMIC ROBOTS

Holonomic robot: Iff the controllable degrees of freedom are equal to total degrees of freedom: $DDOF = DOF(\mathcal{W})$

- An holonomic robot can directly control all velocity components
- The presence of kinematic constraints reduces the capability to freely execute paths and decreases the DDOFs, making them less than DOFs
- An <u>omnidirectional robot</u>, that has no kinematic constraints (no standard wheels), is an example of holonomic robot: $\delta_M = 3 + 0 = DDOF = DOF$

DEGREE OF MANEUVERABILITY VS. DOFS

What about steering freedom?

- $\delta_{M} = 3 \Rightarrow$ ability to freely manipulate the ICR
- Doesn't this mean that the robot is unconstrained selecting its paths?
- Yes! But $\delta_{M} = 3 + 0 \neq 1 + 2$ (e.g., two-steer bicycle)
- This has an impact in the context of trajectories rather than paths
- Trajectory = path + time (m+1 dimensions)

Omni vs. Two-steer making *trajectories* ...

TRAJECTORY MAKING

- A robot has a goal trajectory in which the robot moves along axis X_I at a constant speed of 1 m/s for 1 second.
- Wheels adjust for 1 second. The robot then turns counterclockwise at 90 degrees in 1 second.
- Wheels adjust for 1 second. Finally, the robot then moves parallel to axis Y_I for 1 final second.

Left wheel

(50°,0°,50°)

Be?

v(t)

t / [s]

Right wheel

(-50°,0°,-50°)

Angle wrt global

axis (0°,90°)

acceleration $= \infty$

Arbitrary trajectories are not attainable! (changes to internal DOFs are required and take time) 14

DOFS FOR DIFFERENT ROBOTS

	dim C	Degrees of freedom	Number of actuators	Actuation	Rolling constraints	Holonomic
Train	1	1	1	full		\checkmark
2-joint robot arm	2	2	2	full		\checkmark
6-joint robot arm	6	6	6	full		\checkmark
10-joint robot arm	10	10	10	over		\checkmark
Hovercraft	3	3	2	under		
Car	3	2	2	under	✓	
Helicopter	6	6	4	under		
Fixed wing aircraft	6	6	4	under		
DEPTHX AUV	6	6	6	full		\checkmark

DIFFERENTIAL (*) VEHICLES

Differential steering (vehicle, robot)

two standard wheels mounted on a single axis are independently powered and controlled, providing both *drive* and *steering* functions through the *motion difference* between the wheels

total wheel pairs can be more than two, making control more complex

What are the kinematic equations?

Differential drive

In automotive engineering, it refers to the presence of a differential gear or related device to transfer different motion to the steering wheels on a same axis (e.g., frontal wheels of a normal car)

FROM WHEELS TO ROBOT CHASSIS

COMPOSITION OF ANGULAR VELOCITIES

contribution to the angular velocity of P:

 ω_1

 $\dot{\varphi}_2$ [rad/s

$$\omega_2 = -\frac{r\dot{\varphi}_2}{2I}$$

 $\omega_P =$

 ω_2

The contributions of each wheel to the angular velocity in P can be computed independently and added up (signed)

COMPOSITION OF LINEAR VELOCITIES

 $r\varphi_1 + r\varphi_2$

The contributions of each wheel to the tangential velocity in P can be computed independently and added up, each divided by 2 V_P =

SPECIAL CASES FOR DIFFERENTIAL MOTION

- $V_L = V_R \rightarrow R = \infty$, and there is effectively no rotation, $\omega = 0$: Forward linear motion in a straight line
- $V_L = -V_R \rightarrow R = 0$, meaning that it coincides with P, and $\omega = -V/\ell$: Rotation about the midpoint of the wheel axis (in place rotation)
- $V_L = 0 \rightarrow R = \ell$ (in the center of L), $\omega = V_R/2\ell$: Counterclockwise rotation about the left wheel
- $V_R = 0 \rightarrow R = -\ell$ (in the center of R), $\omega = -V_L/2\ell$: Clockwise rotation about the right wheel

REFERENCE FRAMES AND POSITION OF THE ICR

$$\begin{bmatrix} x_{ICR} \\ y_{ICR} \end{bmatrix} = \begin{bmatrix} x - R\sin(\theta) \\ y + R\cos(\theta) \end{bmatrix}$$

ROBOT POSE EVOLUTION AS A FUNCTION OF ICR

At a time t, an instantaneous motion of duration δt results in an infinitesimal change in orientation equal to $\Delta \theta$, and in an infinitesimal displacement ΔS : what is the robot pose ^W ξ_R at time $(t + \delta t)$?

The ICR will not change, and the new pose is the result of a rotation $\Delta \theta = \omega \delta t$ of the robot about the ICR (ω is constant during the infinitesimal interval)

(1) translation of the ICR at {W} origin, (2) rotation of $\Delta\theta$, (3) translation back to the ICR ₂₂

MOTION EQUATIONS FOR A ROBOT ROTATING ABOUT ITS ICR

Motion of a robot rotating a distance R about its ICR with an angular velocity of $\boldsymbol{\omega}$

- (1) translation of the robot, positioning the ICR at $\{W\}$ origin
- (2) rotation in place of $\Delta \theta = \omega \delta t$
- (3) translation back of the ICR at its initial position

Based on the velocity inputs to the right and left wheels, robot's pose can be computed 23

FORWARD KINEMATICS EQUATIONS

$$\begin{split} W \begin{bmatrix} \mathsf{x}(\mathsf{t} + \delta\mathsf{t}) \\ \mathsf{y}(\mathsf{t} + \delta\mathsf{t}) \\ \theta(\mathsf{t} + \delta\mathsf{t}) \end{bmatrix} &= \begin{bmatrix} \cos(\omega\delta\mathsf{t}) & -\sin(\omega\delta\mathsf{t}) & 0 \\ \sin(\omega\delta\mathsf{t}) & \cos(\omega\delta\mathsf{t}) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathsf{x}(\mathsf{t}) - \mathsf{x}_{\mathsf{ICR}}(\mathsf{t}) \\ \mathsf{y}(\mathsf{t}) - \mathsf{y}_{\mathsf{ICR}}(\mathsf{t}) \\ \theta(\mathsf{t}) \end{bmatrix} + \begin{bmatrix} \mathsf{x}_{\mathsf{ICR}}(\mathsf{t}) \\ \mathsf{y}_{\mathsf{ICR}}(\mathsf{t}) \\ \omega\delta\mathsf{t} \end{bmatrix} \\ W \begin{bmatrix} \mathsf{x}(\mathsf{t} + \delta\mathsf{t}) \\ \mathsf{y}(\mathsf{t} + \delta\mathsf{t}) \\ \theta(\mathsf{t} + \delta\mathsf{t}) \end{bmatrix} &= \begin{bmatrix} (\mathsf{x}(\mathsf{t}) - \mathsf{x}_{\mathsf{ICR}}(\mathsf{t})) \cos(\omega\delta\mathsf{t}) - (\mathsf{y}(\mathsf{t}) - \mathsf{y}_{\mathsf{ICR}}(\mathsf{t})) \sin(\omega\delta\mathsf{t}) + \mathsf{x}_{\mathsf{ICR}}(\mathsf{t}) \\ (\mathsf{x}(\mathsf{t}) - \mathsf{x}_{\mathsf{ICR}}(\mathsf{t})) \sin(\omega\delta\mathsf{t}) + (\mathsf{y}(\mathsf{t}) - \mathsf{y}_{\mathsf{ICR}}(\mathsf{t})) \sin(\omega\delta\mathsf{t}) + \mathsf{x}_{\mathsf{ICR}}(\mathsf{t}) \\ \theta(\mathsf{t}) + \delta\mathsf{t} \end{bmatrix} \\ &= \begin{bmatrix} \mathsf{R}(\mathsf{t}) \sin(\theta(\mathsf{t})) \cos(\omega\delta\mathsf{t}) + \mathsf{R}(\mathsf{t}) \cos(\theta(\mathsf{t})) \sin(\omega\delta\mathsf{t}) + \mathsf{x}(\mathsf{t}) - \mathsf{R}(\mathsf{t}) \sin(\theta(\mathsf{t})) \\ \theta(\mathsf{t}) + \omega\delta\mathsf{t} \end{bmatrix} \\ &= \begin{bmatrix} \mathsf{R}(\mathsf{t}) \sin(\theta(\mathsf{t})) \cos(\omega\delta\mathsf{t}) + \mathsf{R}(\mathsf{t}) \cos(\theta(\mathsf{t})) \sin(\omega\delta\mathsf{t}) + \mathsf{x}(\mathsf{t}) - \mathsf{R}(\mathsf{t}) \sin(\theta(\mathsf{t})) \\ \theta(\mathsf{t}) + \omega\delta\mathsf{t} \end{bmatrix} \\ &= \begin{bmatrix} \mathsf{x}(\mathsf{t}) + \mathsf{R}(\mathsf{t}) \left(\sin(\theta(\mathsf{t}) + \omega\delta\mathsf{t}) - \sin(\theta(\mathsf{t})) \right) \\ \theta(\mathsf{t}) + \omega\delta\mathsf{t} \end{bmatrix} \\ &= \begin{bmatrix} \mathsf{x}(\mathsf{t}) + \mathsf{R}(\mathsf{t}) \left(\sin(\theta(\mathsf{t}) + \omega\delta\mathsf{t}) - \sin(\theta(\mathsf{t})) \right) \\ \theta(\mathsf{t}) + \omega\delta\mathsf{t} \end{bmatrix} \\ &= \begin{bmatrix} \mathsf{x}(\mathsf{t}) + \mathsf{R}(\mathsf{t}) \left(\sin(\theta(\mathsf{t}) + \Delta\theta(\mathsf{t} + \delta\mathsf{t})) - \sin(\theta(\mathsf{t})) \right) \\ \theta(\mathsf{t}) + \omega\delta\mathsf{t} \end{bmatrix} \\ &= \begin{bmatrix} \mathsf{x}(\mathsf{t}) + \mathsf{R}(\mathsf{t}) \left(\sin(\theta(\mathsf{t}) + \Delta\theta(\mathsf{t} + \delta\mathsf{t})) - \sin(\theta(\mathsf{t})) \right) \\ \theta(\mathsf{t}) + \omega\delta\mathsf{t} \end{bmatrix} \\ &= \begin{bmatrix} \mathsf{x}(\mathsf{t}) + \mathsf{R}(\mathsf{t}) \left(\sin(\theta(\mathsf{t}) + \Delta\theta(\mathsf{t} + \delta\mathsf{t}) \right) - \sin(\theta(\mathsf{t})) \right) \\ \theta(\mathsf{t}) + \omega\delta\mathsf{t} \end{bmatrix} \\ &= \begin{bmatrix} \mathsf{x}(\mathsf{t}) + \mathsf{R}(\mathsf{t}) \left(\sin(\theta(\mathsf{t}) + \Delta\theta(\mathsf{t} + \delta\mathsf{t}) \right) - \sin(\theta(\mathsf{t})) \right) \\ \mathsf{t}(\mathsf{t}) = \mathsf{t}(\mathsf{t}) + \mathsf{t}(\mathsf{t}) = \mathsf{t}(\mathsf{t}) + \mathsf{t}) \end{bmatrix} \\ &= \begin{bmatrix} \mathsf{x}(\mathsf{t}) + \mathsf{R}(\mathsf{t}) \left(\sin(\theta(\mathsf{t}) + \Delta\theta(\mathsf{t} + \delta\mathsf{t}) \right) - \sin(\theta(\mathsf{t})) \right) \\ \mathsf{t}(\mathsf{t}) = \mathsf{t}(\mathsf{t}) + \mathsf{t}) \end{bmatrix} \\ &= \begin{bmatrix} \mathsf{t}(\mathsf{t}) + \mathsf{t}(\mathsf{t}) \left(\mathsf{t}) + \mathsf{t}(\mathsf{t}) + \mathsf{t}) \\ \mathsf{t}(\mathsf{t}) = \mathsf{t}(\mathsf{t}) + \mathsf{t}(\mathsf{t}) + \mathsf{t}) \end{bmatrix} \\ &= \begin{bmatrix} \mathsf{t}(\mathsf{t}) + \mathsf{t}(\mathsf{t}) + \mathsf{t}(\mathsf{t}) + \mathsf{t}) \\ \mathsf{t}(\mathsf{t}) + \mathsf{t}) \\ \mathsf{t}(\mathsf{t}) + \mathsf{t}) \end{bmatrix} \\ &= \begin{bmatrix} \mathsf{t}(\mathsf{t}) + \mathsf{t}(\mathsf{t}) + \mathsf{t}) \\ \mathsf{t}(\mathsf{t}) + \mathsf{t}) \\ \mathsf{t}(\mathsf{t}) + \mathsf{t}) \\ &= \begin{bmatrix} \mathsf{t}(\mathsf{t}) + \mathsf{t}(\mathsf{t}) + \mathsf{t}) \\ &= \begin{bmatrix} \mathsf{t}(\mathsf{t}) + \mathsf{t}) \\ \mathsf{t}(\mathsf{t}) + \mathsf{t}) \\ \\ \mathsf{t}(\mathsf{t}) + \mathsf{t}) \\ &= \begin{bmatrix} \mathsf{t}(\mathsf{t}) + \mathsf{t}) \\ &= \begin{bmatrix} \mathsf{t}$$

FORWARD KINEMATICS EQUATIONS

$$W\begin{bmatrix} x(t+\delta t) \\ y(t+\delta t) \\ \theta(t+\delta t) \end{bmatrix} = \begin{bmatrix} x(t) + R(t) \left(\sin\left(\theta(t) + \omega\delta t\right) - \sin(\theta(t)) \right) \\ y(t) - R(t) \left(\cos\left(\theta(t) + \omega\delta t\right) - \cos(\theta(t)) \right) \\ \theta(t) + \omega\delta t \end{bmatrix} = \begin{bmatrix} x(t) + R(t) \left(\sin\left(\theta(t) + \Delta\theta(t+\delta t)\right) - \sin(\theta(t)) \right) \\ y(t) - R(t) \left(\cos\left(\theta(t) + \Delta\theta(t+\delta t)\right) - \cos(\theta(t)) \right) \\ \theta(t) + \Delta\theta(t+\delta t) \end{bmatrix} \\ \theta(t) + \Delta\theta(t+\delta t) = \begin{bmatrix} x(t) + \frac{v(t)}{\omega(t)} \left(\sin(\theta(t) + \Delta\theta(t+\delta t)) - \sin(\theta(t)) \right) \\ y(t) - \frac{v(t)}{\omega(t)} \left(\cos(\theta(t) + \Delta\theta(t+\delta t)) - \cos(\theta(t)) \right) \\ \theta(t) + \omega(t)\delta t \end{bmatrix} \\ = \begin{bmatrix} x(t) + \frac{v(t)}{\omega(t)} \left(\sin(\theta(t) + \Delta\theta(t+\delta t)) - \sin(\theta(t)) \right) \\ Function of the ICR \\ issued velocities \end{bmatrix}$$

To obtain *future poses over time-extended intervals,* it is necessary to provide initial conditions, specify geometry parameters, assign the linear and angular velocity profiles v(t) and $\omega(t)$, and *integrate over time* (which might not be obvious/easy)

In the specific case of a *two-wheeled differential robot*, v(t) and $\omega(t)$ at the reference point *P* on the chassis are functions of the Left and Right speeds issued to the Left and Right wheel, respectively:

$$\omega_P(t) = \frac{r\dot{\varphi}_R - r\dot{\varphi}_L}{2\ell} = \frac{v_R(t) - v_L(t)}{2\ell}$$
$$v_P(t) = \frac{r\dot{\varphi}_R + r\dot{\varphi}_L}{2} = \frac{v_R(t) + v_L(t)}{2}$$