One of the most important tasks of an autonomous system of any kind is to acquire knowledge about its environment. This is done by taking measurements using various sensors and then extracting meaningful information from those measurements. In this chapter we present the most common sensors used in mobile robots and then discuss strategies for extracting information from the sensors. For more detailed information about many of the sensors used on mobile robots, refer to the comprehensive book *Sensors for Mobile Robots* by H.R. Everett [15]. #### 4.1 Sensors for Mobile Robots There are a wide variety of sensors used in mobile robots (figure 4.1). Some sensors are used to measure simple values like the internal temperature of a robot's electronics or the rotational speed of the motors. Other, more sophisticated sensors can be used to acquire information about the robot's environment or even to directly measure a robot's global position. In this chapter we focus primarily on sensors used to extract information about the robot's environment. Because a mobile robot moves around, it will frequently encounter unforeseen environmental characteristics, and therefore such sensing is particularly critical. We begin with a functional classification of sensors. Then, after presenting basic tools for describing a sensor's performance, we proceed to describe selected sensors in detail. #### 4.1.1 Sensor classification We classify sensors using two important functional axes: *proprioceptive/exteroceptive* and *passive/active*. *Proprioceptive* sensors measure values internal to the system (robot); for example, motor speed, wheel load, robot arm joint angles, battery voltage. *Exteroceptive* sensors acquire information from the robot's environment; for example, distance measurements, light intensity, sound amplitude. Hence exteroceptive sensor measurements are interpreted by the robot in order to extract meaningful environmental features. **Figure 4.1**Examples of robots with multi-sensor systems: (a) HelpMate from Transition Research Corporation; (b) B21 from Real World Interface; (c) BIBA Robot, BlueBotics SA. *Passive* sensors measure ambient environmental energy entering the sensor. Examples of passive sensors include temperature probes, microphones, and CCD or CMOS cameras. Active sensors emit energy into the environment, then measure the environmental reaction. Because active sensors can manage more controlled interactions with the environment, they often achieve superior performance. However, active sensing introduces several risks: the outbound energy may affect the very characteristics that the sensor is attempting to measure. Furthermore, an active sensor may suffer from interference between its signal and those beyond its control. For example, signals emitted by other nearby robots, or similar sensors on the same robot, may influence the resulting measurements. Examples of active sensors include wheel quadrature encoders, ultrasonic sensors, and laser rangefinders. Table 4.1 provides a classification of the most useful sensors for mobile robot applications. The most interesting sensors are discussed in this chapter. **Table 4.1** Classification of sensors used in mobile robotics applications | General classification<br>(typical use) | Sensor<br>Sensor System | PC or<br>EC | A or P | |--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------| | Tactile sensors<br>(detection of physical contact or<br>closeness; security switches) | Contact switches, bumpers<br>Optical barriers<br>Noncontact proximity sensors | EC<br>EC<br>EC | P<br>A<br>A | | Wheel/motor sensors<br>(wheel/motor speed and position) | Brush encoders Potentiometers Synchros, resolvers Optical encoders Magnetic encoders Inductive encoders Capacitive encoders | PC<br>PC<br>PC<br>PC<br>PC<br>PC | P<br>P<br>A<br>A<br>A<br>A<br>A | | Heading sensors<br>(orientation of the robot in relation to<br>a fixed reference frame) | Compass<br>Gyroscopes<br>Inclinometers | EC<br>PC<br>EC | P<br>P<br>A/P | | Ground-based beacons (localization in a fixed reference frame) | GPS Active optical or RF beacons Active ultrasonic beacons Reflective beacons | EC<br>EC<br>EC<br>EC | A<br>A<br>A | | Active ranging (reflectivity, time-of-flight, and geometric triangulation) | Reflectivity sensors Ultrasonic sensor Laser rangefinder Optical triangulation (1D) Structured light (2D) | EC<br>EC<br>EC<br>EC | A<br>A<br>A<br>A | | Motion/speed sensors<br>(speed relative to fixed or moving<br>objects) | Doppler radar<br>Doppler sound | EC<br>EC | A<br>A | | Vision-based sensors<br>(visual ranging, whole-image analysis, segmentation, object recognition) | CCD/CMOS camera(s) Visual ranging packages Object tracking packages | EC | P | A, active; P, passive; P/A, passive/active; PC, proprioceptive; EC, exteroceptive. The sensor classes in table 4.1 are arranged in ascending order of complexity and descending order of technological maturity. Tactile sensors and proprioceptive sensors are critical to virtually all mobile robots, and are well understood and easily implemented. Commercial quadrature encoders, for example, may be purchased as part of a gear-motor assembly used in a mobile robot. At the other extreme, visual interpretation by means of one or more CCD/CMOS cameras provides a broad array of potential functionalities, from obstacle avoidance and localization to human face recognition. However, commercially available sensor units that provide visual functionalities are only now beginning to emerge [90, 160]. # 4.1.2 Characterizing sensor performance The sensors we describe in this chapter vary greatly in their performance characteristics. Some sensors provide extreme accuracy in well-controlled laboratory settings, but are overcome with error when subjected to real-world environmental variations. Other sensors provide narrow, high-precision data in a wide variety of settings. In order to quantify such performance characteristics, first we formally define the sensor performance terminology that will be valuable throughout the rest of this chapter. # 4.1.2.1 Basic sensor response ratings A number of sensor characteristics can be rated quantitatively in a laboratory setting. Such performance ratings will necessarily be best-case scenarios when the sensor is placed on a real-world robot, but are nevertheless useful. Dynamic range is used to measure the spread between the lower and upper limits of input values to the sensor while maintaining normal sensor operation. Formally, the dynamic range is the ratio of the maximum input value to the minimum measurable input value. Because this raw ratio can be unwieldy, it is usually measured in *decibels*, which are computed as ten times the common logarithm of the dynamic range. However, there is potential confusion in the calculation of decibels, which are meant to measure the ratio between *powers*, such as watts or horsepower. Suppose your sensor measures motor current and can register values from a minimum of 1 mA to 20 Amps. The dynamic range of this current sensor is defined as $$10 \cdot \log \left[ \frac{20}{0.001} \right] = 43 \text{ dB}$$ (4.1) Now suppose you have a voltage sensor that measures the voltage of your robot's battery, measuring any value from 1 mV to 20 V. Voltage is not a unit of power, but the square of voltage is proportional to power. Therefore, we use 20 instead of 10: $$20 \cdot \log \left[ \frac{20}{0.001} \right] = 86 \, \mathrm{dB}$$ (4.2) Range is also an important rating in mobile robot applications because often robot sensors operate in environments where they are frequently exposed to input values beyond their working range. In such cases, it is critical to understand how the sensor will respond. For example, an optical rangefinder will have a minimum operating range and can thus provide spurious data when measurements are taken with the object closer than that minimum. Resolution is the minimum difference between two values that can be detected by a sensor. Usually, the lower limit of the dynamic range of a sensor is equal to its resolution. However, in the case of digital sensors, this is not necessarily so. For example, suppose that you have a sensor that measures voltage, performs an analog-to-digital (A/D) conversion, and outputs the converted value as an 8-bit number linearly corresponding to between 0 and 5 V. If this sensor is truly linear, then it has $2^8 - 1$ total output values, or a resolution of 5 V(255) = 20 mV. Linearity is an important measure governing the behavior of the sensor's output signal as the input signal varies. A linear response indicates that if two inputs x and y result in the two outputs f(x) and f(y), then for any values a and b, f(ax + by) = af(x) + bf(y). This means that a plot of the sensor's input/output response is simply a straight line. Bandwidth or frequency is used to measure the speed with which a sensor can provide a stream of readings. Formally, the number of measurements per second is defined as the sensor's frequency in hertz. Because of the dynamics of moving through their environment, mobile robots often are limited in maximum speed by the bandwidth of their obstacle detection sensors. Thus, increasing the bandwidth of ranging and vision-based sensors has been a high-priority goal in the robotics community. ## 4.1.2.2 In situ sensor performance The above sensor characteristics can be reasonably measured in a laboratory environment with confident extrapolation to performance in real-world deployment. However, a number of important measures cannot be reliably acquired without deep understanding of the complex interaction between all environmental characteristics and the sensors in question. This is most relevant to the most sophisticated sensors, including active ranging sensors and visual interpretation sensors. Sensitivity itself is a desirable trait. This is a measure of the degree to which an incremental change in the target input signal changes the output signal. Formally, sensitivity is the ratio of output change to input change. Unfortunately, however, the sensitivity of exteroceptive sensors is often confounded by undesirable sensitivity and performance coupling to other environmental parameters. *Cross-sensitivity* is the technical term for sensitivity to environmental parameters that are orthogonal to the target parameters for the sensor. For example, a flux-gate compass can demonstrate high sensitivity to magnetic north and is therefore of use for mobile robot navigation. However, the compass will also demonstrate high sensitivity to ferrous building materials, so much so that its cross-sensitivity often makes the sensor useless in some indoor environments. High cross-sensitivity of a sensor is generally undesirable, especially when it cannot be modeled. *Error* of a sensor is defined as the difference between the sensor's output measurements and the true values being measured, within some specific operating context. Given a true value v and a measured value m, we can define error as error = m - v. Accuracy is defined as the degree of conformity between the sensor's measurement and the true value, and is often expressed as a proportion of the true value (e.g., 97.5% accuracy). Thus small error corresponds to high accuracy and vice versa: $$\left(accuracy = 1 - \frac{|error|}{v}\right) \tag{4.3}$$ Of course, obtaining the ground truth, $\nu$ , can be difficult or impossible, and so establishing a confident characterization of sensor accuracy can be problematic. Further, it is important to distinguish between two different sources of error: Systematic errors are caused by factors or processes that can in theory be modeled. These errors are, therefore, deterministic (i.e., predictable). Poor calibration of a laser rangefinder, an unmodeled slope of a hallway floor, and a bent stereo camera head due to an earlier collision are all possible causes of systematic sensor errors. Random errors cannot be predicted using a sophisticated model nor can they be mitigated by more precise sensor machinery. These errors can only be described in probabilistic terms (i.e., stochastically). Hue instability in a color camera, spurious rangefinding errors, and black level noise in a camera are all examples of random errors. *Precision* is often confused with accuracy, and now we have the tools to clearly distinguish these two terms. Intuitively, high precision relates to reproducibility of the sensor results. For example, one sensor taking multiple readings of the same environmental state has high precision if it produces the same output. In another example, multiple copies of this sensor taking readings of the same environmental state have high precision if their outputs agree. Precision does not, however, have any bearing on the accuracy of the sensor's output with respect to the true value being measured. Suppose that the *random error* of a sensor is characterized by some mean value $\mu$ and a standard deviation $\sigma$ . The formal definition of precision is the ratio of the sensor's output range to the standard deviation: $$precision = \frac{range}{\sigma} \tag{4.4}$$ Note that only $\sigma$ and not $\mu$ has impact on precision. In contrast, mean error $\mu$ is directly proportional to overall sensor error and inversely proportional to sensor accuracy. ### 4.1.2.3 Characterizing error: the challenges in mobile robotics Mobile robots depend heavily on exteroceptive sensors. Many of these sensors concentrate on a central task for the robot: acquiring information on objects in the robot's immediate vicinity so that it may interpret the state of its surroundings. Of course, these "objects" surrounding the robot are all detected from the viewpoint of its local reference frame. Since the systems we study are mobile, their ever-changing position and their motion have a significant impact on overall sensor behavior. In this section, empowered with the terminology of the earlier discussions, we describe how dramatically the sensor error of a mobile robot disagrees with the ideal picture drawn in the previous section. Blurring of systematic and random errors. Active ranging sensors tend to have failure modes that are triggered largely by specific relative positions of the sensor and environment targets. For example, a sonar sensor will produce specular reflections, producing grossly inaccurate measurements of range, at specific angles to a smooth sheetrock wall. During motion of the robot, such relative angles occur at stochastic intervals. This is especially true in a mobile robot outfitted with a ring of multiple sonars. The chances of one sonar entering this error mode during robot motion is high. From the perspective of the moving robot, the sonar measurement error is a random error in this case. Yet, if the robot were to stop, becoming motionless, then a very different error modality is possible. If the robot's static position causes a particular sonar to fail in this manner, the sonar will fail consistently and will tend to return precisely the same (and incorrect!) reading time after time. Once the robot is motionless, the error appears to be systematic and of high precision. The fundamental mechanism at work here is the cross-sensitivity of mobile robot sensors to robot pose and robot-environment dynamics. The models for such cross-sensitivity are not, in an underlying sense, truly random. However, these physical interrelationships are rarely modeled and therefore, from the point of view of an incomplete model, the errors appear random during motion and systematic when the robot is at rest. Sonar is not the only sensor subject to this blurring of systematic and random error modality. Visual interpretation through the use of a CCD camera is also highly susceptible to robot motion and position because of camera dependence on lighting changes, lighting specularity (e.g., glare), and reflections. The important point is to realize that, while systematic error and random error are well-defined in a controlled setting, the mobile robot can exhibit error characteristics that bridge the gap between deterministic and stochastic error mechanisms Multimodal error distributions. It is common to characterize the behavior of a sensor's random error in terms of a probability distribution over various output values. In general, one knows very little about the causes of random error and therefore several simplifying assumptions are commonly used. For example, we can assume that the error is zero-mean, in that it symmetrically generates both positive and negative measurement error. We can go even further and assume that the probability density curve is Gaussian. Although we discuss the mathematics of this in detail in section 4.2, it is important for now to recognize the fact that one frequently assumes symmetry as well as unimodal distribution. This means that measuring the correct value is most probable, and any measurement that is further away from the correct value is less likely than any measurement that is closer to the correct value. These are strong assumptions that enable powerful mathematical principles to be applied to mobile robot problems, but it is important to realize how wrong these assumptions usually are. Consider, for example, the sonar sensor once again. When ranging an object that reflects the sound signal well, the sonar will exhibit high accuracy, and will induce random error based on noise, for example, in the timing circuitry. This portion of its sensor behavior will exhibit error characteristics that are fairly symmetric and unimodal. However, when the sonar sensor is moving through an environment and is sometimes faced with materials that cause coherent reflection rather than returning the sound signal to the sonar sensor, then the sonar will grossly overestimate the distance to the object. In such cases, the error will be biased toward positive measurement error and will be far from the correct value. The error is not strictly systematic, and so we are left modeling it as a probability distribution of random error. So the sonar sensor has two separate types of operational modes, one in which the signal does return and some random error is possible, and the second in which the signal returns after a multipath reflection, and gross overestimation error occurs. The probability distribution could easily be at least bimodal in this case, and since overestimation is more common than underestimation it will also be asymmetric. As a second example, consider ranging via stereo vision. Once again, we can identify two modes of operation. If the stereo vision system correctly correlates two images, then the resulting random error will be caused by camera noise and will limit the measurement accuracy. But the stereo vision system can also correlate two images *incorrectly*, matching two fence posts, for example, that are not the same post in the real world. In such a case stereo vision will exhibit gross measurement error, and one can easily imagine such behavior violating both the unimodal and the symmetric assumptions. The thesis of this section is that sensors in a mobile robot *may* be subject to multiple modes of operation and, when the sensor error is characterized, unimodality and symmetry may be grossly violated. Nonetheless, as we shall see, many successful mobile robot systems make use of these simplifying assumptions and the resulting mathematical techniques with great empirical success. The above sections have presented a terminology with which we can characterize the advantages and disadvantages of various mobile robot sensors. In the following sections, we do the same for a sampling of the most commonly used mobile robot sensors today. #### 4.1.3 Wheel/motor sensors Wheel/motor sensors are devices used to measure the internal state and dynamics of a mobile robot. These sensors have vast applications outside of mobile robotics and, as a result, mobile robotics has enjoyed the benefits of high-quality, low-cost wheel and motor sensors that offer excellent resolution. In the next section, we sample just one such sensor, the optical incremental encoder. ## 4.1.3.1 Optical encoders Optical incremental encoders have become the most popular device for measuring angular speed and position within a motor drive or at the shaft of a wheel or steering mechanism. In mobile robotics, encoders are used to control the position or speed of wheels and other motor-driven joints. Because these sensors are *proprioceptive*, their estimate of position is best in the reference frame of the robot and, when applied to the problem of robot *localization*, significant corrections are required as, discussed in chapter 5. An optical encoder is basically a mechanical light chopper that produces a certain number of sine or square wave pulses for each shaft revolution. It consists of an illumination source, a fixed grating that masks the light, a rotor disc with a fine optical grid that rotates with the shaft, and fixed optical detectors. As the rotor moves, the amount of light striking the optical detectors varies based on the alignment of the fixed and moving gratings. In robotics, the resulting sine wave is transformed into a discrete square wave using a threshold to choose between *light* and *dark* states. Resolution is measured in *cycles per revolution* (CPR). The minimum angular resolution can be readily computed from an encoder's CPR rating. A typical encoder in mobile robotics may have 2000 CPR, while the optical encoder industry can readily manufacture encoders with 10000 CPR. In terms of required bandwidth, it is of course critical that the encoder be sufficiently fast to count at the shaft spin speeds that are expected. Industrial optical encoders present no bandwidth limitation to mobile robot applications. Usually in mobile robotics the *quadrature encoder* is used. In this case, a second illumination and detector pair is placed 90 degrees shifted with respect to the original in terms of the rotor disc. The resulting twin square waves, shown in figure 4.2, provide significantly more information. The ordering of which square wave produces a rising edge first identifies the direction of rotation. Furthermore, the four detectably different states improve the resolution by a factor of four with no change to the rotor disc. Thus, a 2000 CPR encoder in quadrature yields 8000 counts. Further improvement is possible by retaining the sinusoidal **Figure 4.2** Quadrature optical wheel encoder: The observed phase relationship between channel A and B pulse trains are used to determine the direction of the rotation. A single slot in the outer track generates a reference (index) pulse per revolution. wave measured by the optical detectors and performing sophisticated interpolation. Such methods, although rare in mobile robotics, can yield 1000-fold improvements in resolution. As with most proprioceptive sensors, encoders are generally in the controlled environment of a mobile robot's internal structure, and so systematic error and cross-sensitivity can be engineered away. The accuracy of optical encoders is often assumed to be 100% and, although this may not be entirely correct, any errors at the level of an optical encoder are dwarfed by errors downstream of the motor shaft. #### 4.1.4 Heading sensors Heading sensors can be *proprioceptive* (gyroscope, inclinometer) or *exteroceptive* (compass). They are used to determine the robot's orientation and inclination. They allow us, together with appropriate velocity information, to integrate the movement to a position estimate. This procedure, which has its roots in vessel and ship navigation, is called *dead reckoning*. # 4.1.4.1 Compasses The two most common modern sensors for measuring the direction of a magnetic field are the Hall effect and flux gate compasses. Each has advantages and disadvantages, as described below. The Hall effect describes the behavior of electric potential in a semiconductor when in the presence of a magnetic field. When a constant current is applied across the length of a semiconductor, there will be a voltage difference in the perpendicular direction, across the semiconductor's width, based on the relative orientation of the semiconductor to magnetic flux lines. In addition, the sign of the voltage potential identifies the direction of the magnetic field. Thus, a single semiconductor provides a measurement of flux and direction along one dimension. Hall effect digital compasses are popular in mobile robotics, and con- **Figure 4.3** Digital compass: Sensors such as the digital/analog Hall effect sensor shown, available from Dinsmore (http://dinsmoregroup.com/dico), enable inexpensive (<\$ 15) sensing of magnetic fields. tain two such semiconductors at right angles, providing two axes of magnetic field (thresholded) direction, thereby yielding one of eight possible compass directions. The instruments are inexpensive but also suffer from a range of disadvantages. Resolution of a digital Hall effect compass is poor. Internal sources of error include the nonlinearity of the basic sensor and systematic bias errors at the semiconductor level. The resulting circuitry must perform significant filtering, and this lowers the bandwidth of Hall effect compasses to values that are slow in mobile robot terms. For example, the Hall effect compass pictured in figure 4.3 needs 2.5 seconds to settle after a 90 degree spin. The flux gate compass operates on a different principle. Two small coils are wound on ferrite cores and are fixed perpendicular to one another. When alternating current is activated in both coils, the magnetic field causes shifts in the phase depending on its relative alignment with each coil. By measuring both phase shifts, the direction of the magnetic field in two dimensions can be computed. The flux gate compass can accurately measure the strength of a magnetic field and has improved resolution and accuracy; however, it is both larger and more expensive than a Hall effect compass. Regardless of the type of compass used, a major drawback concerning the use of the Earth's magnetic field for mobile robot applications involves disturbance of that magnetic field by other magnetic objects and man-made structures, as well as the bandwidth limitations of electronic compasses and their susceptibility to vibration. Particularly in indoor environments, mobile robotics applications have often avoided the use of compasses, although a compass can conceivably provide useful *local* orientation information indoors, even in the presence of steel structures. # 4.1.4.2 Gyroscopes Gyroscopes are heading sensors which preserve their orientation in relation to a fixed reference frame. Thus they provide an absolute measure for the heading of a mobile system. **Figure 4.4** Two-axis mechanical gyroscope. Gyroscopes can be classified in two categories, mechanical gyroscopes and optical gyroscopes. **Mechanical gyroscopes.** The concept of a mechanical gyroscope relies on the inertial properties of a fast-spinning rotor. The property of interest is known as the gyroscopic precession. If you try to rotate a fast-spinning wheel around its vertical axis, you will feel a harsh reaction in the horizontal axis. This is due to the angular momentum associated with a spinning wheel and will keep the axis of the gyroscope inertially stable. The reactive torque $\tau$ and thus the tracking stability with the inertial frame are proportional to the spinning speed $\omega$ , the precession speed $\Omega$ , and the wheel's inertia I. $$\tau = I\omega\Omega \tag{4.5}$$ By arranging a spinning wheel, as seen in figure 4.4, no torque can be transmitted from the outer pivot to the wheel axis. The spinning axis will therefore be space-stable (i.e., fixed in an inertial reference frame). Nevertheless, the remaining friction in the bearings of the gyro axis introduce small torques, thus limiting the long-term space stability and introducing small errors over time. A high quality mechanical gyroscope can cost up to \$100,000 and has an angular drift of about 0.1 degrees in 6 hours. For navigation, the spinning axis has to be initially selected. If the spinning axis is aligned with the north-south meridian, the earth's rotation has no effect on the gyro's horizontal axis. If it points east-west, the horizontal axis reads the earth rotation. Rate gyros have the same basic arrangement as shown in figure 4.4 but with a slight modification. The gimbals are restrained by a torsional spring with additional viscous damping. This enables the sensor to measure angular speeds instead of absolute orientation. **Optical gyroscopes.** Optical gyroscopes are a relatively new innovation. Commercial use began in the early 1980s when they were first installed in aircraft. Optical gyroscopes are angular speed sensors that use two monochromatic light beams, or lasers, emitted from the same source, instead of moving, mechanical parts. They work on the principle that the speed of light remains unchanged and, therefore, geometric change can cause light to take a varying amount of time to reach its destination. One laser beam is sent traveling clockwise through a fiber while the other travels counterclockwise. Because the laser traveling in the direction of rotation has a slightly shorter path, it will have a higher frequency. The difference in frequency $\Delta f$ of the two beams is a proportional to the angular velocity $\Omega$ of the cylinder. New solid-state optical gyroscopes based on the same principle are build using microfabrication technology, thereby providing heading information with resolution and bandwidth far beyond the needs of mobile robotic applications. Bandwidth, for instance, can easily exceed 100 kHz while resolution can be smaller than 0.0001 degrees/hr. #### 4.1.5 Ground-based beacons One elegant approach to solving the localization problem in mobile robotics is to use active or passive beacons. Using the interaction of on-board sensors and the environmental beacons, the robot can identify its position precisely. Although the general intuition is identical to that of early human navigation beacons, such as stars, mountains, and lighthouses, modern technology has enabled sensors to localize an outdoor robot with accuracies of better than 5 cm within areas that are kilometers in size. In the following section, we describe one such beacon system, the global positioning system (GPS), which is extremely effective for outdoor ground-based and flying robots. Indoor beacon systems have been generally less successful for a number of reasons. The expense of environmental modification in an indoor setting is not amortized over an extremely large useful area, as it is, for example, in the case of the GPS. Furthermore, indoor environments offer significant challenges not seen outdoors, including multipath and environmental dynamics. A laser-based indoor beacon system, for example, must disambiguate the one true laser signal from possibly tens of other powerful signals that have reflected off of walls, smooth floors, and doors. Confounding this, humans and other obstacles may be constantly changing the environment, for example, occluding the one true path from the beacon to the robot. In commercial applications, such as manufacturing plants, the environment can be carefully controlled to ensure success. In less structured indoor settings, beacons have nonetheless been used, and the problems are mitigated by careful beacon placement and the use of passive sensing modalities. **Figure 4.5**Calculation of position and heading based on GPS. ## 4.1.5.1 The global positioning system The *global positioning system* (GPS) was initially developed for military use but is now freely available for civilian navigation. There are at least twenty-four operational GPS satellites at all times. The satellites orbit every 12 hours at a height of 20.190 km. Four satellites are located in each of six planes inclined 55 degrees with respect to the plane of the earth's equator (figure 4.5). Each satellite continuously transmits data that indicate its location and the current time. Therefore, GPS receivers are completely passive but exteroceptive sensors. The GPS satellites synchronize their transmissions so that their signals are sent at the same time. When a GPS receiver reads the transmission of two or more satellites, the arrival time differences inform the receiver as to its relative distance to each satellite. By combining information regarding the arrival time and instantaneous location of four satellites, the receiver can infer its own position. In theory, such triangulation requires only three data points. However, timing is extremely critical in the GPS application because the time intervals being measured are in nanoseconds. It is, of course, mandatory that the satellites be well synchronized. To this end, they are updated by ground stations regularly and each satellite carries on-board atomic clocks for timing. The GPS receiver clock is also important so that the travel time of each satellite's transmission can be accurately measured. But GPS receivers have a simple quartz clock. So, although three satellites would ideally provide position in three axes, the GPS receiver requires four satellites, using the additional information to solve for four variables: three position axes plus a time correction. The fact that the GPS receiver must read the transmission of four satellites simultaneously is a significant limitation. GPS satellite transmissions are extremely low-power, and reading them successfully requires direct line-of-sight communication with the satellite. Thus, in confined spaces such as city blocks with tall buildings or in dense forests, one is unlikely to receive four satellites reliably. Of course, most indoor spaces will also fail to provide sufficient visibility of the sky for a GPS receiver to function. For these reasons, the GPS has been a popular sensor in mobile robotics, but has been relegated to projects involving mobile robot traversal of wide-open spaces and autonomous flying machines. A number of factors affect the performance of a localization sensor that makes use of the GPS. First, it is important to understand that, because of the specific orbital paths of the GPS satellites, coverage is not geometrically identical in different portions of the Earth and therefore resolution is not uniform. Specifically, at the North and South Poles, the satellites are very close to the horizon and, thus, while resolution in the latitude and longitude directions is good, resolution of altitude is relatively poor as compared to more equatorial locations. The second point is that GPS satellites are merely an information source. They can be employed with various strategies in order to achieve dramatically different levels of localization resolution. The basic strategy for GPS use, called *pseudorange* and described above, generally performs at a resolution of 15 m. An extension of this method is *differential GPS (DGPS)*, which makes use of a second receiver that is static and at a known exact position. A number of errors can be corrected using this reference, and so resolution improves to the order of 1 m or less. A disadvantage of this technique is that the stationary receiver must be installed, its location must be measured very carefully, and of course the moving robot must be within kilometers of this static unit in order to benefit from the DGPS technique. A further improved strategy is to take into account the phase of the carrier signals of each received satellite transmission. There are two carriers, at 19 cm and 24 cm, and therefore significant improvements in precision are possible when the phase difference between multiple satellites is measured successfully. Such receivers can achieve 1 cm resolution for point positions and, with the use of multiple receivers, as in DGPS, sub-1 cm resolution. A final consideration for mobile robot applications is bandwidth. The GPS will generally offer no better than 200 to 300 ms latency, and so one can expect no better than 5 Hz GPS updates. On a fast-moving mobile robot or flying robot, this can mean that local motion integration will be required for proper control due to GPS latency limitations. #### 4.1.6 Active ranging Active ranging sensors continue to be the most popular sensors in mobile robotics. Many ranging sensors have a low price point, and, most importantly, all ranging sensors provide easily interpreted outputs: direct measurements of distance from the robot to objects in its vicinity. For obstacle detection and avoidance, most mobile robots rely heavily on active ranging sensors. But the local freespace information provided by ranging sensors can also be accumulated into representations beyond the robot's current local reference frame. Thus active ranging sensors are also commonly found as part of the localization and environmental modeling processes of mobile robots. It is only with the slow advent of successful visual interpretation competence that we can expect the class of active ranging sensors to gradually lose their primacy as the sensor class of choice among mobile roboticists. Below, we present two *time-of-flight* active ranging sensors: the ultrasonic sensor and the laser rangefinder. Then, we present two geometric active ranging sensors: the optical triangulation sensor and the structured light sensor. #### 4.1.6.1 Time-of-flight active ranging Time-of-flight ranging makes use of the propagation speed of sound or an electromagnetic wave. In general, the travel distance of a sound of electromagnetic wave is given by $$d = c \cdot t \tag{4.6}$$ where d = distance traveled (usually round-trip); c =speed of wave propagation; t = time of flight. It is important to point out that the propagation speed v of sound is approximately 0.3 m/ms whereas the speed of electromagnetic signals is 0.3 m/ns, which is 1 million times faster. The time of flight for a typical distance, say 3 m, is 10 ms for an ultrasonic system but only 10 ns for a laser range finder. It is thus evident that measuring the time of flight t with electromagnetic signals is more technologically challenging. This explains why laser range sensors have only recently become affordable and robust for use on mobile robots. The quality of time-of-flight range sensors depends mainly on - uncertainties in determining the exact time of arrival of the reflected signal; - inaccuracies in the time-of-flight measurement (particularly with laser range sensors); - the dispersal cone of the transmitted beam (mainly with ultrasonic range sensors); - interaction with the target (e.g., surface absorption, specular reflections); - · variation of propagation speed; - the speed of the mobile robot and target (in the case of a dynamic target); As discussed below, each type of time-of-flight sensor is sensitive to a particular subset of the above list of factors. **The ultrasonic sensor (time-of-flight, sound).** The basic principle of an ultrasonic sensor is to transmit a packet of (ultrasonic) pressure waves and to measure the time it takes for this wave packet to reflect and return to the receiver. The distance d of the object causing the reflection can be calculated based on the propagation speed of sound c and the time of flight t. $$d = \frac{c \cdot t}{2} \tag{4.7}$$ The speed of sound c in air is given by $$c = \sqrt{\gamma RT} \tag{4.8}$$ where $\gamma$ = ratio of specific heats; R = gas constant; T = temperature in degrees Kelvin. In air at standard pressure and $20^{\circ}$ C the speed of sound is approximately c=343 m/s. Figure 4.6 shows the different signal output and input of an ultrasonic sensor. First, a series of sound pulses are emitted, comprising the *wave packet*. An integrator also begins to linearly climb in value, measuring the time from the transmission of these sound waves to detection of an echo. A threshold value is set for triggering an incoming sound wave as a valid echo. This threshold is often decreasing in time, because the amplitude of the expected echo decreases over time based on dispersal as it travels longer. But during transmission of the initial sound pulses and just afterward, the threshold is set very high to suppress triggering the echo detector with the outgoing sound pulses. A transducer will continue to ring for up to several milliseconds after the initial transmission, and this governs the *blanking time* of the sensor. Note that if, during the blanking time, the transmitted sound were to reflect off of an extremely close object and return to the ultrasonic sensor, it may fail to be detected. **Figure 4.6** Signals of an ultrasonic sensor. However, once the blanking interval has passed, the system will detect any abovethreshold reflected sound, triggering a digital signal and producing the distance measurement using the integrator value. The ultrasonic wave typically has a frequency between 40 and 180 kHz and is usually generated by a piezo or electrostatic transducer. Often the same unit is used to measure the reflected signal, although the required blanking interval can be reduced through the use of separate output and input devices. Frequency can be used to select a useful range when choosing the appropriate ultrasonic sensor for a mobile robot. Lower frequencies correspond to a longer range, but with the disadvantage of longer post-transmission ringing and, therefore, the need for longer blanking intervals. Most ultrasonic sensors used by mobile robots have an effective range of roughly 12 cm to 5 m. The published accuracy of commercial ultrasonic sensors varies between 98% and 99.1%. In mobile robot applications, specific implementations generally achieve a resolution of approximately 2 cm. In most cases one may want a narrow opening angle for the sound beam in order to also obtain precise directional information about objects that are encountered. This is a major limitation since sound propagates in a cone-like manner (figure 4.7) with opening angles around 20 to 40 degrees. Consequently, when using ultrasonic ranging one does not acquire depth data points but, rather, entire regions of constant depth. This means that the sensor tells us only that there is an object at a certain distance within the area of the measurement cone. The sensor readings must be plotted as segments of an arc (sphere for 3D) and not as point measurements (figure 4.8). However, recent research developments show significant improvement of the measurement quality in using sophisticated echo processing [76]. Ultrasonic sensors suffer from several additional drawbacks, namely in the areas of error, bandwidth, and cross-sensitivity. The published accuracy values for ultrasonics are **Figure 4.7** Typical intensity distribution of an ultrasonic sensor. **Figure 4.8**Typical readings of an ultrasonic system: (a) 360 degree scan; (b) results from different geometric primitives [23]. Courtesy of John Leonard, MIT. nominal values based on successful, perpendicular reflections of the sound wave off of an acoustically reflective material. This does not capture the effective error modality seen on a mobile robot moving through its environment. As the ultrasonic transducer's angle to the object being ranged varies away from perpendicular, the chances become good that the sound waves will coherently reflect away from the sensor, just as light at a shallow angle reflects off of a smooth surface. Therefore, the true error behavior of ultrasonic sensors is compound, with a well-understood error distribution near the true value in the case of a successful retroreflection, and a more poorly understood set of range values that are grossly larger than the true value in the case of coherent reflection. Of course, the acoustic properties of the material being ranged have direct impact on the sensor's performance. Again, the impact is discrete, with one material possibly failing to produce a reflection that is sufficiently strong to be sensed by the unit. For example, foam, fur, and cloth can, in various circumstances, acoustically absorb the sound waves. A final limitation of ultrasonic ranging relates to bandwidth. Particularly in moderately open spaces, a single ultrasonic sensor has a relatively slow cycle time. For example, measuring the distance to an object that is 3 m away will take such a sensor 20 ms, limiting its operating speed to 50 Hz. But if the robot has a ring of twenty ultrasonic sensors, each firing sequentially and measuring to minimize interference between the sensors, then the ring's cycle time becomes 0.4 seconds and the overall update frequency of any one sensor is just 2.5 Hz. For a robot conducting moderate speed motion while avoiding obstacles using ultrasonics, this update rate can have a measurable impact on the maximum speed possible while still sensing and avoiding obstacles safely. Laser rangefinder (time-of-flight, electromagnetic). The laser rangefinder is a time-of-flight sensor that achieves significant improvements over the ultrasonic range sensor owing to the use of laser light instead of sound. This type of sensor consists of a transmitter which illuminates a target with a collimated beam (e.g., laser), and a receiver capable of detecting the component of light which is essentially coaxial with the transmitted beam. Often referred to as optical radar or *lidar* (light detection and ranging), these devices produce a range estimate based on the time needed for the light to reach the target and return. A mechanical mechanism with a mirror sweeps the light beam to cover the required scene in a plane or even in three dimensions, using a rotating, nodding mirror. One way to measure the time of flight for the light beam is to use a pulsed laser and then measure the elapsed time directly, just as in the ultrasonic solution described earlier. Electronics capable of resolving picoseconds are required in such devices and they are therefore very expensive. A second method is to measure the beat frequency between a frequency-modulated continuous wave (FMCW) and its received reflection. Another, even easier method is to measure the phase shift of the reflected light. We describe this third approach in detail. Figure 4.9 Schematic of laser rangefinding by phase-shift measurement. Figure 4.10 Range estimation by measuring the phase shift between transmitted and received signals. **Phase-shift measurement.** Near-infrared light (from a light-emitting diode [LED] or laser) is collimated and transmitted from the transmitter in figure 4.9 and hits a point P in the environment. For surfaces having a roughness greater than the wavelength of the incident light, diffuse reflection will occur, meaning that the light is reflected almost isotropically. The wavelength of the infrared light emitted is 824 nm and so most surfaces, with the exception of only highly polished reflecting objects, will be diffuse reflectors. The component of the infrared light which falls within the receiving aperture of the sensor will return almost parallel to the transmitted beam for distant objects. The sensor transmits 100% amplitude modulated light at a known frequency and measures the phase shift between the transmitted and reflected signals. Figure 4.10 shows how this technique can be used to measure range. The wavelength of the modulating signal obeys the equation $c = f \cdot \lambda$ where c is the speed of light and f the modulating frequency. For f = 5 MHz (as in the AT&T sensor), $\lambda = 60$ m. The total distance D' covered by the emitted light is Figure 4.11 (a) Schematic drawing of laser range sensor with rotating mirror; (b) Scanning range sensor from EPS Technologies Inc.; (c) Industrial 180 degree laser range sensor from Sick Inc., Germany $$D' = L + 2D = L + \frac{\theta}{2\pi}\lambda \tag{4.9}$$ where D and L are the distances defined in figure 4.9. The required distance D, between the beam splitter and the target, is therefore given by $$D = \frac{\lambda}{4\pi} \Theta \tag{4.10}$$ where $\theta$ is the electronically measured phase difference between the transmitted and reflected light beams, and $\lambda$ the known modulating wavelength. It can be seen that the transmission of a single frequency modulated wave can theoretically result in ambiguous range estimates since, for example, if $\lambda=60$ m, a target at a range of 5 m would give an indistinguishable phase measurement from a target at 65 m, since each phase angle would be 360 degrees apart. We therefore define an "ambiguity interval" of $\lambda$ , but in practice we note that the range of the sensor is much lower than $\lambda$ due to the attenuation of the signal in air. It can be shown that the confidence in the range (phase estimate) is inversely proportional to the square of the received signal amplitude, directly affecting the sensor's accuracy. Hence dark, distant objects will not produce as good range estimates as close, bright objects. **Figure 4.12** Typical range image of a 2D laser range sensor with a rotating mirror. The length of the lines through the measurement points indicate the uncertainties. In figure 4.11 the schematic of a typical 360 degrees laser range sensor and two examples are shown. figure 4.12 shows a typical range image of a 360 degrees scan taken with a laser range sensor. As expected, the angular resolution of laser rangefinders far exceeds that of ultrasonic sensors. The Sick laser scanner shown in Figure 4.11 achieves an angular resolution of 0.5 degree. Depth resolution is approximately 5 cm, over a range from 5 cm up to 20 m or more, depending upon the brightness of the object being ranged. This device performs twenty five 180 degrees scans per second but has no mirror nodding capability for the vertical dimension. As with ultrasonic ranging sensors, an important error mode involves coherent reflection of the energy. With light, this will only occur when striking a highly polished surface. Practically, a mobile robot may encounter such surfaces in the form of a polished desktop, file cabinet or, of course, a mirror. Unlike ultrasonic sensors, laser rangefinders cannot detect the presence of optically transparent materials such as glass, and this can be a significant obstacle in environments, for example, museums, where glass is commonly used. #### 4.1.6.2 Triangulation-based active ranging Triangulation-based ranging sensors use geometric properties manifest in their measuring strategy to establish distance readings to objects. The simplest class of triangulation-based **Figure 4.13** Principle of 1D laser triangulation. rangers are *active* because they project a known light pattern (e.g., a point, a line, or a texture) onto the environment. The reflection of the known pattern is captured by a receiver and, together with known geometric values, the system can use simple triangulation to establish range measurements. If the receiver measures the position of the reflection along a single axis, we call the sensor an optical triangulation sensor in 1D. If the receiver measures the position of the reflection along two orthogonal axes, we call the sensor a structured light sensor. These two sensor types are described in the two sections below. **Optical triangulation (1D sensor).** The principle of optical triangulation in 1D is straightforward, as depicted in figure 4.13. A collimated beam (e.g., focused infrared LED, laser beam) is transmitted toward the target. The reflected light is collected by a lens and projected onto a position-sensitive device (PSD) or linear camera. Given the geometry of figure 4.13, the distance *D* is given by $$D = f \frac{L}{x} \tag{4.11}$$ The distance is proportional to 1/x; therefore the sensor resolution is best for close objects and becomes poor at a distance. Sensors based on this principle are used in range sensing up to 1 or 2 m, but also in high-precision industrial measurements with resolutions far below 1 $\mu$ m. Optical triangulation devices can provide relatively high accuracy with very good resolution (for close objects). However, the operating range of such a device is normally fairly limited by geometry. For example, the optical triangulation sensor pictured in figure 4.14 **Figure 4.14** A commercially available, low-cost optical triangulation sensor: the Sharp GP series infrared rangefinders provide either analog or digital distance measures and cost only about \$ 15. operates over a distance range of between 8 and 80 cm. It is inexpensive compared to ultrasonic and laser rangefinder sensors. Although more limited in range than sonar, the optical triangulation sensor has high bandwidth and does not suffer from cross-sensitivities that are more common in the sound domain. **Structured light (2D sensor).** If one replaces the linear camera or PSD of an optical triangulation sensor with a 2D receiver such as a CCD or CMOS camera, then one can recover distance to a large set of points instead of to only one point. The emitter must project a known pattern, or *structured light*, onto the environment. Many systems exist which either project light textures (figure 4.15b) or emit collimated light (possibly laser) by means of a rotating mirror. Yet another popular alternative is to project a laser stripe (figure 4.15a) by turning a laser beam into a plane using a prism. Regardless of how it is created, the projected light has a known structure, and therefore the image taken by the CCD or CMOS receiver can be filtered to identify the pattern's reflection. Note that the problem of recovering depth is in this case far simpler than the problem of passive image analysis. In passive image analysis, as we discuss later, existing features in the environment must be used to perform *correlation*, while the present method projects a known pattern upon the environment and thereby avoids the standard correlation problem altogether. Furthermore, the structured light sensor is an active device so it will continue to work in dark environments as well as environments in which the objects are featureless (e.g., uniformly colored and edgeless). In contrast, stereo vision would fail in such texture-free circumstances. Figure 4.15c shows a 1D active triangulation geometry. We can examine the trade-off in the design of triangulation systems by examining the geometry in figure 4.15c. The mea- Figure 4.15 (a) Principle of active two dimensional triangulation. (b) Other possible light structures. (c) 1D schematic of the principle. Image (a) and (b) courtesy of Albert-Jan Baerveldt, Halmstad University. sured values in the system are $\alpha$ and u, the distance of the illuminated point from the origin in the imaging sensor. (Note the imaging sensor here can be a camera or an array of photo diodes of a position-sensitive device (e.g., a 2D PSD). From figure 4.15c, simple geometry shows that $$x = \frac{b \cdot u}{f \cot \alpha - u} \; ; \quad z = \frac{b \cdot f}{f \cot \alpha - u}$$ (4.12) where f is the distance of the lens to the imaging plane. In the limit, the ratio of image resolution to range resolution is defined as the triangulation gain $G_p$ and from equation (4.12) is given by $$\frac{\partial u}{\partial z} = G_p = \frac{b \cdot f}{z^2} \tag{4.13}$$ This shows that the ranging accuracy, for a given image resolution, is proportional to source/detector separation b and focal length f, and decreases with the square of the range z. In a scanning ranging system, there is an additional effect on the ranging accuracy, caused by the measurement of the projection angle $\alpha$ . From equation 4.12 we see that $$\frac{\partial \alpha}{\partial z} = G_{\alpha} = \frac{b \sin \alpha^2}{z^2} \tag{4.14}$$ We can summarize the effects of the parameters on the sensor accuracy as follows: - Baseline length (b): the smaller b is, the more compact the sensor can be. The larger b is, the better the range resolution will be. Note also that although these sensors do not suffer from the correspondence problem, the disparity problem still occurs. As the baseline length b is increased, one introduces the chance that, for close objects, the illuminated point(s) may not be in the receiver's field of view. - Detector length and focal length (f): A larger detector length can provide either a larger field of view or an improved range resolution or partial benefits for both. Increasing the detector length, however, means a larger sensor head and worse electrical characteristics (increase in random error and reduction of bandwidth). Also, a short focal length gives a large field of view at the expense of accuracy, and vice versa. At one time, laser stripe-based structured light sensors were common on several mobile robot bases as an inexpensive alternative to laser rangefinding devices. However, with the increasing quality of laser rangefinding sensors in the 1990s, the structured light system has become relegated largely to vision research rather than applied mobile robotics. ## 4.1.7 Motion/speed sensors Some sensors measure directly the relative motion between the robot and its environment. Since such motion sensors detect relative motion, so long as an object is moving relative to the robot's reference frame, it will be detected and its speed can be estimated. There are a number of sensors that inherently measure some aspect of motion or change. For example, a pyroelectric sensor detects change in heat. When a human walks across the sensor's field Figure 4.16 Doppler effect between two moving objects (a) or a moving and a stationary object (b). of view, his or her motion triggers a change in heat in the sensor's reference frame. In the next section, we describe an important type of motion detector based on the Doppler effect. These sensors represent a well-known technology with decades of general applications behind them. For fast-moving mobile robots such as autonomous highway vehicles and unmanned flying vehicles, Doppler-based motion detectors are the obstacle detection sensor of choice. #### 4.1.7.1 Doppler effect-based sensing (radar or sound) Anyone who has noticed the change in siren pitch that occurs when an approaching fire engine passes by and recedes is familiar with the Doppler effect. A transmitter emits an electromagnetic or sound wave with a frequency $f_t$ . It is either received by a receiver (figure 4.16a) or reflected from an object (figure 4.16b). The measured frequency $f_r$ at the receiver is a function of the relative speed v between transmitter and receiver according to $$f_r = f_t \, \frac{1}{1 + v/c} \tag{4.15}$$ if the transmitter is moving and $$f_r = f_t (1 + v/c) (4.16)$$ if the receiver is moving. In the case of a reflected wave (figure 4.16b) there is a factor of 2 introduced, since any change x in relative separation affects the round-trip path length by 2x. Furthermore, in such situations it is generally more convenient to consider the change in frequency $\Delta f$ , known as the *Doppler shift*, as opposed to the *Doppler frequency* notation above. $$\Delta f = f_t - f_r = \frac{2f_t v \cos \theta}{c} \tag{4.17}$$ $$v = \frac{\Delta f \cdot c}{2f_t \cos \theta} \tag{4.18}$$ where $\Delta f$ = Doppler frequency shift; $\theta$ = relative angle between direction of motion and beam axis. The Doppler effect applies to sound and electromagnetic waves. It has a wide spectrum of applications: - Sound waves: for example, industrial process control, security, fish finding, measure of ground speed. - *Electromagnetic waves*: for example, vibration measurement, radar systems, object tracking. A current application area is both autonomous and manned highway vehicles. Both microwave and laser radar systems have been designed for this environment. Both systems have equivalent range, but laser can suffer when visual signals are deteriorated by environmental conditions such as rain, fog, and so on. Commercial microwave radar systems are already available for installation on highway trucks. These systems are called VORAD (vehicle on-board radar) and have a total range of approximately 150 m. With an accuracy of approximately 97%, these systems report range rates from 0 to 160 km/hr with a resolution of 1 km/hr. The beam is approximately 4 degrees wide and 5 degrees in elevation. One of the key limitations of radar technology is its bandwidth. Existing systems can provide information on multiple targets at approximately 2 Hz. #### 4.1.8 Vision-based sensors Vision is our most powerful sense. It provides us with an enormous amount of information about the environment and enables rich, intelligent interaction in dynamic environments. It is therefore not surprising that a great deal of effort has been devoted to providing machines with sensors that mimic the capabilities of the human vision system. The first step in this process is the creation of sensing devices that capture the same raw information light that the human vision system uses. The next section describes the two current technologies for creating vision sensors: CCD and CMOS. These sensors have specific limitations in performance when compared to the human eye, and it is important that the reader understand these limitations. Afterward, the second and third sections describe vision-based sensors Figure 4.17 Commercially available CCD chips and CCD cameras. Because this technology is relatively mature, cameras are available in widely varying forms and costs (http://www.howstuffworks.com/digital-camera2.htm). that are commercially available, like the sensors discussed previously in this chapter, along with their disadvantages and most popular applications. #### 4.1.8.1 CCD and CMOS sensors CCD technology. The charged coupled device is the most popular basic ingredient of robotic vision systems today. The CCD chip (see figure 4.17) is an array of light-sensitive picture elements, or pixels, usually with between 20,000 and several million pixels total. Each pixel can be thought of as a light-sensitive, discharging capacitor that is 5 to 25 $\mu m$ in size. First, the capacitors of all pixels are charged fully, then the integration period begins. As photons of light strike each pixel, they liberate electrons, which are captured by electric fields and retained at the pixel. Over time, each pixel accumulates a varying level of charge based on the total number of photons that have struck it. After the integration period is complete, the relative charges of all pixels need to be frozen and read. In a CCD, the reading process is performed at one corner of the CCD chip. The bottom row of pixel charges is transported to this corner and read, then the rows above shift down and the process is repeated. This means that each charge must be transported across the chip, and it is critical that the value be preserved. This requires specialized control circuitry and custom fabrication techniques to ensure the stability of transported charges. The photodiodes used in CCD chips (and CMOS chips as well) are not equally sensitive to all frequencies of light. They are sensitive to light between 400 and 1000 nm wavelength. It is important to remember that photodiodes are less sensitive to the ultraviolet end of the spectrum (e.g., blue) and are overly sensitive to the infrared portion (e.g., heat). You can see that the basic light-measuring process is colorless: it is just measuring the total number of photons that strike each pixel in the integration period. There are two common approaches for creating *color* images. If the pixels on the CCD chip are grouped into 2 x 2 sets of four, then red, green, and blue dyes can be applied to a color filter so that each individual pixel receives only light of one color. Normally, two pixels measure green while one pixel each measures red and blue light intensity. Of course, this one-chip color CCD has a geometric resolution disadvantage. The number of pixels in the system has been effectively cut by a factor of four, and therefore the image resolution output by the CCD camera will be sacrificed. The three-chip color camera avoids these problems by splitting the incoming light into three complete (lower intensity) copies. Three separate CCD chips receive the light, with one red, green, or blue filter over each entire chip. Thus, in parallel, each chip measures light intensity for one color, and the camera must combine the CCD chips' outputs to create a joint color image. Resolution is preserved in this solution, although the three-chip color cameras are, as one would expect, significantly more expensive and therefore more rarely used in mobile robotics. Both three-chip and single-chip color CCD cameras suffer from the fact that photodiodes are much more sensitive to the near-infrared end of the spectrum. This means that the overall system detects blue light much more poorly than red and green. To compensate, the gain must be increased on the blue channel, and this introduces greater absolute noise on blue than on red and green. It is not uncommon to assume at least one to two bits of additional noise on the blue channel. Although there is no satisfactory solution to this problem today, over time the processes for blue detection have been improved and we expect this positive trend to continue. The CCD camera has several camera parameters that affect its behavior. In some cameras, these values are fixed. In others, the values are constantly changing based on built-in feedback loops. In higher-end cameras, the user can modify the values of these parameters via software. The *iris position* and *shutter speed* regulate the amount of light being measured by the camera. The iris is simply a mechanical aperture that constricts incoming light, just as in standard 35 mm cameras. Shutter speed regulates the integration period of the chip. In higher-end cameras, the effective shutter speed can be as brief at 1/30,000 seconds and as long as 2 seconds. *Camera gain* controls the overall amplification of the analog signal, prior to A/D conversion. However, it is very important to understand that, even though the image may appear brighter after setting high gain, the shutter speed and iris may not have changed at all. Thus gain merely amplifies the signal, and amplifies along with the signal all of the associated noise and error. Although useful in applications where imaging is done for human consumption (e.g., photography, television), gain is of little value to a mobile roboticist. In color cameras, an additional control exists for *white balance*. Depending on the source of illumination in a scene (e.g., fluorescent lamps, incandescent lamps, sunlight, underwater filtered light, etc.), the relative measurements of red, green, and blue light that define pure white light will change dramatically. The human eye compensates for all such effects in ways that are not fully understood, but, the camera can demonstrate glaring inconsistencies in which the same table looks blue in one image, taken during the night, and yellow in another image, taken during the day. White balance controls enable the user to change the relative gains for red, green, and blue in order to maintain more consistent color definitions in varying contexts. The key disadvantages of CCD cameras are primarily in the areas of inconstancy and dynamic range. As mentioned above, a number of parameters can change the brightness and colors with which a camera creates its image. Manipulating these parameters in a way to provide consistency over time and over environments, for example, ensuring that a green shirt always looks green, and something dark gray is always dark gray, remains an open problem in the vision community. For more details on the fields of color constancy and luminosity constancy, consult [40]. The second class of disadvantages relates to the behavior of a CCD chip in environments with extreme illumination. In cases of very low illumination, each pixel will receive only a small number of photons. The longest possible integration period (i.e., shutter speed) and camera optics (i.e., pixel size, chip size, lens focal length and diameter) will determine the minimum level of light for which the signal is stronger than random error noise. In cases of very high illumination, a pixel fills its well with free electrons and, as the well reaches its limit, the probability of trapping additional electrons falls and therefore the linearity between incoming light and electrons in the well degrades. This is termed *saturation* and can indicate the existence of a further problem related to cross-sensitivity. When a well has reached its limit, then additional light within the remainder of the integration period may cause further charge to leak into neighboring pixels, causing them to report incorrect values or even reach secondary saturation. This effect, called *blooming*, means that individual pixel values are not truly independent. The camera parameters may be adjusted for an environment with a particular light level, but the problem remains that the dynamic range of a camera is limited by the well capacity of the individual pixels. For example, a high-quality CCD may have pixels that can hold 40,000 electrons. The noise level for reading the well may be 11 electrons, and therefore the dynamic range will be 40,000:11, or 3600:1, which is 35 dB. **CMOS technology.** The complementary metal oxide semiconductor chip is a significant departure from the CCD. It too has an array of pixels, but located alongside each pixel are several transistors specific to that pixel. Just as in CCD chips, all of the pixels accumulate charge during the integration period. During the data collection step, the CMOS takes a new Figure 4.18 A commercially available, low-cost CMOS camera with lens attached. approach: the pixel-specific circuitry next to every pixel measures and amplifies the pixel's signal, all in parallel for every pixel in the array. Using more traditional traces from general semiconductor chips, the resulting pixel values are all carried to their destinations. CMOS has a number of advantages over CCD technologies. First and foremost, there is no need for the specialized clock drivers and circuitry required in the CCD to transfer each pixel's charge down all of the array columns and across all of its rows. This also means that specialized semiconductor manufacturing processes are not required to create CMOS chips. Therefore, the same production lines that create microchips can create inexpensive CMOS chips as well (see figure 4.18). The CMOS chip is so much simpler that it consumes significantly less power; incredibly, it operates with a power consumption that is one-hundredth the power consumption of a CCD chip. In a mobile robot, power is a scarce resource and therefore this is an important advantage. On the other hand, the CMOS chip also faces several disadvantages. Most importantly, the circuitry next to each pixel consumes valuable real estate on the face of the light-detecting array. Many photons hit the transistors rather than the photodiode, making the CMOS chip significantly less sensitive than an equivalent CCD chip. Second, the CMOS technology is younger and, as a result, the best resolution that one can purchase in CMOS format continues to be far inferior to the best CCD chips available. Time will doubtless bring the high-end CMOS imagers closer to CCD imaging performance. Given this summary of the mechanism behind CCD and CMOS chips, one can appreciate the sensitivity of any vision-based robot sensor to its environment. As compared to the human eye, these chips all have far poorer adaptation, cross-sensitivity, and dynamic range. As a result, vision sensors today continue to be fragile. Only over time, as the underlying performance of imaging chips improves, will significantly more robust vision-based sensors for mobile robots be available. Camera output considerations. Although digital cameras have inherently digital output, throughout the 1980s and early 1990s, most affordable vision modules provided analog output signals, such as NTSC (National Television Standards Committee) and PAL (Phase Alternating Line). These camera systems included a D/A converter which, ironically, would be counteracted on the computer using a *framegrabber*, effectively an A/D converter board situated, for example, on a computer's bus. The D/A and A/D steps are far from noisefree, and furthermore the color depth of the analog signal in such cameras was optimized for human vision, not computer vision. More recently, both CCD and CMOS technology vision systems provide digital signals that can be directly utilized by the roboticist. At the most basic level, an imaging chip provides parallel digital I/O (input/output) pins that communicate discrete pixel level values. Some vision modules make use of these direct digital signals, which must be handled subject to hard-time constraints governed by the imaging chip. To relieve the real-time demands, researchers often place an *image buffer chip* between the imager's digital output and the computer's digital inputs. Such chips, commonly used in webcams, capture a complete image snapshot and enable non real time access to the pixels, usually in a single, ordered pass. At the highest level, a roboticist may choose instead to utilize a higher-level digital transport protocol to communicate with an imager. Most common are the IEEE 1394 (*Firewire*) standard and the USB (and USB 2.0) standards, although some older imaging modules also support serial (RS-232). To use any such high-level protocol, one must locate or create driver code both for that communication layer and for the particular implementation details of the imaging chip. Take note, however, of the distinction between lossless digital video and the standard digital video stream designed for human visual consumption. Most digital video cameras provide digital output, but often only in compressed form. For vision researchers, such compression must be avoided as it not only discards information but even introduces image detail that does not actually exist, such as MPEG (Moving Picture Experts Group) discretization boundaries. #### 4.1.8.2 Visual ranging sensors Range sensing is extremely important in mobile robotics as it is a basic input for successful obstacle avoidance. As we have seen earlier in this chapter, a number of sensors are popular in robotics explicitly for their ability to recover depth estimates: ultrasonic, laser rangefinder, optical rangefinder, and so on. It is natural to attempt to implement ranging functionality using vision chips as well. However, a fundamental problem with visual images makes rangefinding relatively difficult. Any vision chip collapses the 3D world into a 2D image plane, thereby losing depth information. If one can make strong assumptions regarding the size of objects in the world, or their particular color and reflectance, then one can directly interpret the appearance of the 2D image to recover depth. But such assumptions are rarely possible in real-world Figure 4.19 Depiction of the camera optics and its impact on the image. In order to get a sharp image, the image plane must coincide with the focal plane. Otherwise the image of the point (x,y,z) will be blurred in the image, as can be seen in the drawing above. mobile robot applications. Without such assumptions, a single picture does not provide enough information to recover spatial information. The general solution is to recover depth by looking at *several* images of the scene to gain more information, hopefully enough to at least partially recover depth. The images used must be different, so that taken together they provide additional information. They could differ in viewpoint, yielding *stereo* or *motion* algorithms. An alternative is to create different images, not by changing the viewpoint, but by changing the camera geometry, such as the focus position or lens iris. This is the fundamental idea behind depth from focus and depth from defocus techniques. In the next section, we outline the general approach to the depth from focus techniques because it presents a straightforward and efficient way to create a vision-based range sensor. Subsequently, we present details for the correspondence-based techniques of depth from stereo and motion. **Depth from focus.** The depth from focus class of techniques relies on the fact that image properties not only change as a function of the scene but also as a function of the camera parameters. The relationship between camera parameters and image properties is depicted in figure 4.19. The basic formula governing image formation relates the distance of the object from the lens, d in the above figure, to the distance e from the lens to the focal point, based on the focal length f of the lens: