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 (5.57)

corresponding to equation (5.44).

5.6.3.3   Case study: Kalman filter localization with line feature extraction
The Pygmalion robot at EPFL is a differential-drive robot that uses a laser rangefinder as
its primary sensor [37, 38]. In contrast to both Dervish and Rhino, the environmental rep-
resentation of Pygmalion is continuous and abstract: the map consists of a set of infinite
lines describing the environment. Pygmalion’s belief state is, of course, represented as a
Gaussian distribution since this robot uses the Kalman filter localization algorithm. The
value of its mean position  is represented to a high level of precision, enabling Pygmalion
to localize with very high precision when desired. Below, we present details for Pygma-
lion’s implementation of the five Kalman filter localization steps. For simplicity we assume
that the sensor frame  is equal to the robot frame . If not specified all the vectors
are represented in the world coordinate system .

1. Robot position prediction. At the time increment  the robot is at position
 and its best position estimate is . The control input

 drives the robot to the position  (figure 5.29). 
The robot position prediction  at the time increment  can be computed

from the previous estimate  and the odometric integration of the movement. For
the differential drive that Pygmalion has we can use the model (odometry) developed in
section 5.2.4:

 (5.58)

with the updated covariance matrix
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 (5.59)

where

 (5.60)

2. Observation. For line-based localization, each single observation (i.e., a line feature) is
extracted from the raw laser rangefinder data and consists of the two line parameters ,

 or ,  (figure 4.36) respectively. For a rotating laser rangefinder, a representation
in the polar coordinate frame is more appropriate and so we use this coordinate frame here:

 (5.61)

After acquiring the raw data at time k+1, lines and their uncertainties are extracted (fig-
ure 5.30a, b). This leads to  observed lines with  line parameters (figure 5.30c) and
a covariance matrix for each line that can be calculated from the uncertainties of all the
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Figure 5.29
Prediction of the robot’s position (thick) based on its former position (thin) and the executed move-
ment. The ellipses drawn around the robot positions represent the uncertainties in the x,y direction
(e.g.; ). The uncertainty of the orientation  is not represented in the picture. 3σ θ
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measurement points contributing to each line as developed for line extraction in section
4.3.1.1:

 (5.62)

αj

rj

line j

Figure 5.30
Observation: From the raw data (a) acquired by the laser scanner at time k + 1, lines are extracted (b).
The line parameters  and  and its uncertainties can be represented in the model space (c).αj rj
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3. Measurement prediction. Based on the stored map and the predicted robot position
, the measurement predictions of expected features  are generated (figure 5.31).

To reduce the required calculation power, there is often an additional step that first selects
the possible features, in this case lines, from the whole set of features in the map. These
lines are stored in the map and specified in the world coordinate system . Therefore
they need to be transformed to the robot frame :

  (5.63)

According to figure (5.31), the transformation is given by

 (5.64)

and its Jacobian  by
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Figure 5.31
Representation of the target position in the world coordinate frame  and robot coordinate frame
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 (5.65)

The measurement prediction results in predicted lines represented in the robot coordi-
nate frame (figure 5.32). They are uncertain, because the prediction of robot position is
uncertain.

4. Matching. For matching, we must find correspondence (or a pairing) between predicted
and observed features (figure 5.33). In our case we take the Mahalanobis distance
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Figure 5.32
Measurement predictions: Based on the map and the estimated robot position the targets (visible
lines) are predicted. They are represented in the model space similar to the observations.
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 (5.66)

with

 (5.67)

 (5.68)

Figure 5.33
Matching: The observations (thick) and measurement prediction (thin) are matched and the innova-
tion and its uncertainties are calculated. 
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to enable finding the best matches while eliminating all other remaining observed and pre-
dicted unmatched features. 

5. Estimation. Applying the Kalman filter results in a final pose estimate corresponding
to the weighted sum of (figure 5.34)

• the pose estimates of each matched pairing of observed and predicted features;

• the robot position estimation based on odometry and observation positions.

5.7 Other Examples of Localization Systems

Markov localization and Kalman filter localization have been two extremely popular strat-
egies for research mobile robot systems navigating indoor environments. They have strong
formal bases and therefore well-defined behavior. But there are a large number of other
localization techniques that have been used with varying degrees of success on commercial
and research mobile robot platforms. We will not explore the space of all localization sys-
tems in detail. Refer to surveys such as [5] for such information.

There are, however, several categories of localization techniques that deserve mention.
Not surprisingly, many implementations of these techniques in commercial robotics

Figure 5.34
Kalman filter estimation of the new robot position: By fusing the prediction of robot position (thin)
with the innovation gained by the measurements (thick) we get the updated estimate  of the
robot position (very thick).
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