
LAB LECTURE 1:
INTRODUCTION TO ROS

INSTRUCTOR:
GIANNI A. DI CARO

16-311-Q INTRODUCTION TO ROBOTICS

2

PROBLEM(S) IN ROBOTICS DEVELOPMENT

• Lack of standards

• Little code reusability

• Keeping reinventing (or rewriting) device drivers,

access to robot’s interfaces, management of on-

board processes, inter-process communication

protocols, …

• Keeping re-coding standard algorithms

• New robot in the lab (or in the factory) 

start re-coding (mostly) from scratch

In Robotics, before ROS

ROBOT OPERATING SYSTEM (ROS)

3

http://www.ros.org

WHAT IS ROS?

ROS is an open-source robot operating system

 A set of software libraries and tools that help you build
robot applications that work across a wide variety of
robotic platforms

Originally developed in 2007 at the Stanford Artificial
Intelligence Laboratory and development continued at
Willow Garage

 Since 2013 managed by OSRF (Open Source
Robotics Foundation)

4

Note: Some of the following slides are adapted from
Roi Yehoshua

http://www.osrfoundation.org/

ROS MAIN FEATURES

ROS has two "sides"

 The operating system side, which provides standard
operating system services such as:

o hardware abstraction

o low-level device control

o implementation of commonly used functionality

o message-passing between processes

o package management

 A suite of user contributed packages that implement
common robot functionality such as SLAM, planning,
perception, vision, manipulation, etc.

5

ROS MAIN FEATURES

6

ROS PHILOSOPHY

 Peer to Peer

o ROS systems consist of many small programs (nodes) which

connect to each other and continuously exchange messages

 Tools-based

o There are many small, generic programs that perform tasks such as

visualization, logging, plotting data streams, etc.

 Multi-Lingual

o ROS software modules can be written in any language for which a

client library has been written. Currently client libraries exist for C++,

Python, LISP, Java, JavaScript, MATLAB, Ruby, and more.

 Thin

o The ROS conventions encourage contributors to create stand-alone

libraries/packages and then wrap those libraries so they send and

receive messages to/from other ROS modules.

 Free & open source, community-based, repositories
7

ROS WIKI

 http://wiki.ros.org/

8

http://wiki.ros.org/

SOME ROBOTS USING ROS (> 125)

http://wiki.ros.org/Robots

9

http://wiki.ros.org/Robots

ROS CORE CONCEPTS

Nodes

Messages and Topics

Services

Actions

ROS Master

Parameters

Packages and Stacks

10

ROS NODES

Single-purposed executable programs

oe.g. sensor driver(s), actuator driver(s),

map building, planner, UI, etc.

 Individually compiled, executed, and managed

Nodes are written using a ROS client library

o roscpp – C++ client library

o rospy – python client library

Nodes can publish or subscribe to a Topic

Nodes can also provide or use a Service or

an Action
11

ROS NODES

12

ROS TOPICS AND ROS MESSAGES

 Topic: named stream of messages with a defined type

o Data from a range-finder might be sent on a topic
called scan, with a message of type LaserScan

Nodes communicate with each other by
publishing messages to topics

Publish/Subscribe model:
1-to-N broadcasting

13

Messages: Strictly-typed data structures for inter-
node communication

o geometry_msgs/Twist is used to express
velocity commands: Vector3 linear

Vector3 angular

ROS TOPICS AND ROS MESSAGES

14

Vector3 linear
Vector3 angular

float64 x
float64 y
float64 z

geometry_msgs/Twist

Vector3

ROS SERVICES

 Synchronous inter-node transactions
(blocking RPC): ask for something and wait for it

 Service/Client model: 1-to-1 request-response

 Service roles:

ocarry out remote computation

o trigger functionality / behavior

o map_server/static_map – retrieves the
current grid map used for navigation

15

ROS MASTER

 Provides connection information to nodes so that they can transmit

messages to each other

o When activated, every node connects to a specified master to

register details of the message streams they publish, services

and actions that they provide, and streams, services, an

actions to which that they to subscribe

o When a new node appears, the master provides it with the

information that it needs to form a direct peer-to-peer TCP-

based connection with other nodes publishing and subscribing

to the same message topics and services

16

ROS MASTER

17

ROS MASTER

 We have two nodes: a Camera node and an
Image_viewer node

Typically the camera node would start first
notifying the master that it wants to publish
images on the topic "images":

18

ROS MASTER

 Image_viewer wants to subscribe to the topic
"images" to get and display images obtained with
the camera:

19

ROS MASTER

Now that the topic "images" has both a publisher
and a subscriber, the master node notifies Camera
and Image_viewer about each others existence, so
that they can start transferring images to one
another:

20

21

ROS MASTER

 The scenario can be made even more modular

by adding an Image processing node, from

which the Image viewer gets its data

PARAMETER SERVER

 A shared, multi-variate dictionary that is accessible via
network APIs

 Best used for static, non-binary data such as configuration
parameters

 Runs inside the ROS master

22

ROS BAGS

Bags are the primary mechanism in ROS for

data logging

Bags subscribe to one or more ROS topics,

and store the serialized message data in a file

as it is received.

 Bag files can also be played back in ROS to

the same topics they were recorded from, or

even remapped to new topics.

23

http://wiki.ros.org/Topics

ROS COMPUTATION GRAPH LEVEL

24

ROS SUPPORTED PLATFORMS

ROS is currently supported only on Ubuntu

o other variants such as Windows, Mac OS X, and
Android are considered experimental

Current ROS Kinetic Kame runs on Ubuntu 16.04
(Xenial) and will support Ubuntu 15.10 (Willy)

25

ROS ENVIRONMENT

 ROS is fully integrated in the Linux environment: the

rosbash package contains useful bash functions and

adds tab-completion to a large number of ROS utilities

 After installing, ROS, setup.*sh files in '/opt/ros/<distro>/',

need to be sourced to start rosbash:

 This command needs to be run on every new shell to

have access to the ros commands: an easy way to do it

is to add the line to the bash startup file (~/.bashrc)

$ source /opt/ros/indigo/setup.bash

26

ROS PACKAGES

Software in ROS is organized in packages.

A package contains one or more nodes,
documentation, and provides a ROS interface

Most of ROS packages are hosted in GitHub

27

ROS PACKAGE SYSTEM

28

29

ROS PACKAGE AND CATKIN WORKSPACE

 Packages are the most atomic unit of build and the

unit of release

 A package contains the source files for one node or

more and configuration files

 A ROS package is a directory inside a catkin

workspace that has a package.xml file in it

 A catkin workspace is a set of directories in which a

set of related ROS code/packages live (catkin ~

ROS build system: CMake + Python scripts)

 It’s possible to have multiple workspaces, but work

can performed on only one-at-a-time

CATKIN WORKSPACE LAYOUT

30

CATKIN WORKSPACE FOLDERS

31

 Source space: workspace_folder/src

 Build space: workspace_folder/build

 Development space: workspace_folder/devel

 Install space: workspace_folder/install

ROS PACKAGE FILES

 Source files implement nodes, can be written in multiple languages

 Nodes are launched individually or in groups, using launch files
32

 Layout of the src/my_package folder in a catkin workspace:

ROS FILE SYSTEM LEVEL

33

ROS COMMUNITY LEVEL

34

