LAB LECTURE 1:
INTRODUCTION TO ROS

INSTRUCTOR:
GIANNI A. DI CARO

PROBLEM(S) IN ROBOTICS DEVELOPMENT

In Robotics, before ROS

« Lack of standards
 Little code reusability

« Keeping reinventing (or rewriting) device drivers,
access to robot’s interfaces, management of on-
board processes, inter-process communication
protocaols, ...

« Keeping re-coding standard algorithms

* New robot in the lab (or in the factory) -
start re-coding (mostly) from scratch

ROBOT OPERATING SYSTEM (ROS)

:::ROS http://www.ros.org

“ Open Source Robotics Foundation

Plumbing Capabilities Ecosystem

9MnL Xog SOY
9nL J SOH
}OeqpuoLeld SOy
shw3z 2313 SOY
SjunL auand SOY

0102 T UEp
010z ‘Z1snbny
1102 ' Uasep
110z ‘0¢ 1snbny
240z ' Iudy

2 :
=] dR:"
=< =2
—I‘ -
c B
= . e
> d =

]
(@
1)
e
=
(=2
3
=
@
=%
=
I
o
w
L5}
&
=l
g :
=
=
(<)
o
=
@
3 R R
NS o of 7l
~ 2 LA .."
: A S
T 7 S
= g7 S
S *
)
5
Lo
LS5
o
s
o

(3
=

=
<]
(=3
=
=

WHAT IS ROS?

* ROS Is an open-source robot operating system

» A set of software libraries and tools that help you build
robot applications that work across a wide variety of
robotic platforms

» Originally developed in 2007 at the Stanford Artificial
Intelligence Laboratory and development continued at
Willow Garage

» Since 2013 managed by OSRF (Open Source
Robotics Foundation)

Note: Some of the following slides are adapted from
Roi Yehoshua

http://www.osrfoundation.org/

ROS MAIN FEATURES

ROS has two "sides"

» The operating system side, which provides standard
operating system services such as:

o hardware abstraction

o low-level device control

o Implementation of commonly used functionality
o Mmessage-passing between processes

o package management

= A suite of user contributed packages that implement
common robot functionality such as SLAM, planning,
perception, vision, manipulation, etc.

ROS MAIN FEATURES

RO S (_navigation) (task executive) (visualization)

(simulation) (_perception) (control)
(planning) i
(data logging) (message passing_J
(device drivers) (real-time capabilities)
(web browser) O S
(‘email client)

(' window manager)

memory management process management

scheduler | |device drivers| [file system

ROS PHILOSOPHY

= Peer to Peer
o ROS systems consist of many small programs (nodes) which
connect to each other and continuously exchange messages
» Tools-based
o There are many small, generic programs that perform tasks such as
visualization, logging, plotting data streams, etc.
= Multi-Lingual
o ROS software modules can be written in any language for which a
client library has been written. Currently client libraries exist for C++,
Python, LISP, Java, JavaScript, MATLAB, Ruby, and more.
= Thin
o The ROS conventions encourage contributors to create stand-alone
libraries/packages and then wrap those libraries so they send and
receive messages to/from other ROS modules.
* Free & open source, community-based, repositories

ROS Wik

= http://wiki.ros.org/

ROS:

Install
Install ROS on your machine.
Getting Started

Learn about various concepts, client libraries, and technical overview of ROS.

Tutorials
Step-by-step instructions for learning ROS hands-on
Contribute

How to get involved with the ROS community, such as submitting your own repository.

Support
What to do if something doesn't work as expected.

Software:

Distributions

View the different release Distributions for ROS.
® Packages

Search the 2000+ software libraries available for ROS.
Core Libraries

APls by language and topic.

Common Tools

Common toals for developing and debugging ROS software.

Robots/Hardware:

Robots

Robots that you can use with ROS.
Sensors

Sensor drivers for ROS.
Motors

Motor controller drivers for ROS.
Publications, Courses, and Events:

Papers
Published papers with open source implementations available.
Books
Published books with documentation and tutorials with open source code available.
Courses
Courses using or teaching ROS.
Events

Past events and materials based on ROS.

http://wiki.ros.org/

SOME ROBOTS USING ROS (> 125)

http://wiki.ros.org/Robots

@(_u ARPAYH

Fraunhofer IPA Care-O-
bot

Aldebaran Nao

Willow Garage PR2

Merlin miabotPro

052
<
e

Q‘_u ARPATH

Clearpath Robotics Husky é

Videre Erratic

Lego NXT

iRobot Roomba

AscTec
Quadrotor

Clearpath
Robotics

Kingfisher

*IRobotnik

TurtleBot

Robotnik
Guardian

CoroWare
Corobot

Festo
Didactic
Robotino

http://wiki.ros.org/Robots

ROS CoRE CONCEPTS

* Nodes

*» Messages and Topics

= Services) A
= Actions .

* ROS Master - J
= Parameters

» Packages and Stacks

ROS NODES

» Single-purposed executable programs

oe.g. sensor driver(s), actuator driver(s),
map building, planner, Ul, etc.

* Individually compiled, executed, and managed
* Nodes are written using a ROS client library
o roscpp — C++ client library
o rospy — python client library
» Nodes can publish or subscribe to a Topic

* Nodes can also provide or use a Service or
an Action

11

ROS NODES

| |
y
l Keyboard Node RVIZ - |
| |
| ! |
s
| kOperanng Condition Marker Node Kinect Nodes 0—?——-
m—— >
I 1; |
-4:_-" Serial Node »-| Estimator Node Object Tracker Node :
I |
| Control Node |
D i o i e e — s i " i s i |
- o o — i =
—p TOpic - USB lCPatametorw I ROS | . W
: |yt e i
- Service <> Std In Service 0,-» Node
ROS Node —
< RS232 s
<> Parameter Access - Message Publication é“

Message

Publication Node

ROS Toprics AND ROS MESSAGES

* Topic: named stream of messages with a defined type

o Data from a range-finder might be sent on a topic
called scan, with a message of type LaserScan

* Nodes communicate with each other by
publishing messages to topics

- Publish/Subscribe model: %r %=
1-to-N broadcasting ,‘ N

» Messages: Strictly-typed data structures for inter-
node communication

o geometry _msgs/Twist is used to express
velocity commands:. [vector3 linear

Vector3 angular

13

ROS Toprics AND ROS MESSAGES

geometry_msgs/Twist

—

Kinect Node

Publishes 3D data from

Kinect as messages VeCtOr3 Iinear
Vector3 angular

Processes Kinect data

and publishes directions 3D Processing

Vector3

Node
float64 x
Subscribes to directions float64 %
. and commands motors
Arduino Node ﬂoat64 7
\ current_location 1
b=t HMI
localization —» nav_i monitor < behaviour machme task

target location
TSC

- e N— middleware
new_ state
nav_status jtarget e /

bﬂdﬂﬁ node = hw_monitor
w.msg

hw.command J

14

ROS SERVICES

= Synchronous inter-node transactions
(blocking RPC): ask for something and wait for it

= Service/Client model: 1-to-1 request-response

= Service roles:
o carry out remote Computation :
O trigger functionality / behaVior request response

o map_server/static_map — retrieves the
current grid map used for navigation -

" ROS Node

Service Client

© \ ROS Node
/map_server :I {map }-,

Jodom

move_base

: Service Name: [example_service
Service Type: roscpp_tutorials/Twolnts

move_base/faction_{opics /move_base

Request Type: roscpp_tutorials/TwolntsRequest
. Response Type: roscpp_tutorials/TwolntsResponse

frobot_state_publisher

[

15

ROS MASTER

* Provides connection information to nodes so that they can transmit
messages to each other

o When activated, every node connects to a specified master to
register details of the message streams they publish, services
and actions that they provide, and streams, services, an
actions to which that they to subscribe

o When a new node appears, the master provides it with the
iInformation that it needs to form a direct peer-to-peer TCP-
based connection with other nodes publishing and subscribing
to the same message topics and services

Master

l— Registration 4[7 Registration—l

Node 1 < Messages— Node 2 < Messages—+ Noden

L

16

ROS MASTER

3) connect (“scan”, TCP)

Talker 4) TCP server: foo:2345 : o %
XML/RPC: foo: 1234 Listener \,{"»}" 6\90
TCP data: foo: 2345 5) connect (fo0:2345) o/ e /}6
______________ : & So %. @/4,
6) data messages —TCP (\ > S

"’ 4
hokuyo TCP server; fo0:2345
XML/RPC: foo:1234 ViRwer
TCP data: f00:2345 _ connect(foo:2345)

=

LaserScan data messages
A

TCP

17

ROS MASTER

= \We have two nodes: a Camera node and an
Image_viewer node

» Typically the camera node would start first
notifying the master that it wants to publish
Images on the topic "Images":

18

ROS MASTER

* |mage_viewer wants to subscribe to the topic
"Images" to get and display images obtained with

the camera:
Subscribe(images)
viewer

—®| images |

19

ROS MASTER

= Now that the topic "images" has both a publisher
and a subscriber, the master node notifies Camera
and Image_viewer about each others existence, so
that they can start transferring images to one

another:
S

®| images

20

ROS MASTER

= The scenario can be made even more modular
by adding an Image processing node, from
which the Image viewer gets its data

| ROS o |
| E | —Registration |
| Master o |
: i | | |
|
| | | : Image :
: Reglstratlon Registration | | Display |
| Node |
| | : |
| . |
Image | | |
: Camera Processing | | | |
. Node Node | |
| | : |
| | |

L - - . - -

Data

D Camera J

21

PARAMETER SERVER

= A shared, multi-variate dictionary that is accessible via
network APIs

» Best used for static, non-binary data such as configuration

parameters
ROS Master

= Runs inside the ROS master

’) ‘S':‘:z ’

Listener

22

ROS BAGS

» Bags are the primary mechanism in ROS for
data logging

» Bags subscribe to one or more ROS topics,
and store the serialized message data in a file
as it Is received.

» Bag files can also be played back in ROS to
the same topics they were recorded from, or
even remapped to new topics.

23

http://wiki.ros.org/Topics

ROS CoOMPUTATION GRAPH LEVEL

Nodes Master Carametor Messages
-\‘\ Server

Computation
Graph Level

C)
LN

Topics Services Bags

24

ROS SUPPORTED PLATFORMS

* ROS is currently supported only on Ubuntu
o other variants such as Windows, Mac OS X, and
Android are considered experimental

= Current ROS Kinetic Kame runs on Ubuntu 16.04
(Xenial) and will support Ubuntu 15.10 (Willy)

25

ROS ENVIRONMENT

» ROS is fully integrated in the Linux environment: the
rosbash package contains useful bash functions and
adds tab-completion to a large number of ROS utilities

= After installing, ROS, setup.*sh files in '/opt/ros/<distro>/',
need to be sourced to start rosbash:

S source /opt/ros/indigo/setup.bash

* This command needs to be run on every new shell to
have access to the ros commands: an easy way to do it
IS to add the line to the bash startup file (~/.bashrc)

26

ROS PACKAGES

» Software in ROS Is organized in packages.

» A package contains one or more nodes,
documentation, and provides a ROS interface

» Most of ROS packages are hosted in GitHub

Package

Nodes
Messages
Services

27

ROS PACKAGE SYSTEM

Repository

Package
- | MNodes |
Package | Messages |
[Nodes |, Services
| . 4
Mosgages . -
Sorvices -

"\\

Repository Repository *\

. 4 ’fétadcﬁ\, ,ffs'ad‘\\‘. |

\ o ey B
_ |Repesitory |\ \."' 4\ 4/
\ Ay /
\\ = ,,,f"/

28

ROS PACKAGE AND CATKIN WORKSPACE

» Packages are the most atomic unit of build and the
unit of release

= A package contains the source files for one node or
more and configuration files

» AROS package is a directory inside a catkin
workspace that has a package.xml file in it

= A catkin workspace is a set of directories in which a
set of related ROS code/packages live (catkin ~
ROS build system: CMake + Python scripts)

* |[t's possible to have multiple workspaces, but work
can performed on only one-at-a-time

29

CATKIN WORKSPACE LAYOUT

workspace folder/ —-—- WORKSPRCE
src/ —-— SCOURCE SPACE
CMakeLists. txt -— The 'toplevel' CMake file

package 1/
CMakeLists. txt
package.xml

package n/
CATKIN IGNORE -- Opticnal empty file to exclude package n from being processed
CMakelLists. txt
package.xml

build/ —-— BUILD SPACE

CATKIN IGNCRE -— Keeps catkin from walking this directory
devel/ —— DEVELCPMENT SPACE (set by CATKIN DEVEL PREFIX)

bin/

etc/

include/

1lib/

share/

.catkin

env.bash

setup.bash

setup.sh

install/ —— INSTALL SPACE (set by CMAKE INSTALL PREFIX)
bin/
etc/
include/
1lib/
share/
.catkin
env.bash
setup.bash
setup.sh

30

CATKIN WORKSPACE FOLDERS

= Source space: workspace_folder/src

» Build space: workspace folder/build

= Development space: workspace folder/devel
» |nstall space: workspace_folder/install

Source space Contains the source code of catkin packages. Each folder
within the source space contains one or more catkin
packages.

Build Space is where CMake is invoked to build the catkin packages in

the source space. CMake and catkin keep their cache
information and other intermediate files here.

Development (Devel) is where built targets are placed prior to being installed
Space

Install Space Once targets are built, they can be installed into the install
space by invoking the install target.

31

ROS PACKAGE FILES

» | ayout of the src/my_package folder in a catkin workspace:

Directory ____| Explanation

include/ C++ include headers

src/ Source files

msg/ Folder containing Message (msg) types
srv/ Folder containing Service (srv) types
launch/ Folder containing launch files
package.xml The package manifest

CMakelists.txt CMake build file

= Source files implement nodes, can be written in multiple languages

» Nodes are launched individually or in groups, using launch files .

ROS FILE SYSTEM LEVEL

ROS File System Level

Meta Packages

Packages

Package

Messages | -
Manifest & Services Codes Misc

33

ROS COMMUNITY LEVEL \

Distributions ROS Wiki

Mailing list
ROS Answers
Bug ticket System

34

