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Sapienza”, Italy

The subject of this chapter is the motion control problem of wheeled mobile
robots (WMRs). With reference to the unicycle kinematics, we review and
compare several control strategies for trajectory tracking and posture sta-
bilization in an environment free of obstacles. Experiments are reported for
SuperMARIO, a two-wheel differentially-driven mobile robot. From the com-
parison of the obtained results, guidelines are provided for WMR end-users.

1. Introduction

Wheeled mobile robots (WMRs) are increasingly present in industrial and
service robotics, particularly when flexible motion capabilities are required
on reasonably smooth grounds and surfaces [29]. Several mobility config-
urations (wheel number and type, their location and actuation, single- or
multi-body vehicle structure) can be found in the applications, e.g, see [18].
The most common for single-body robots are differential drive and synchro
drive (both kinematically equivalent to a unicycle), tricycle or car-like drive,
and omnidirectional steering. A detailed reference on the analytical study of
the kinematics of WMRs is [1].

Beyond the relevance in applications, the problem of autonomous motion
planning and control of WMRs has attracted the interest of researchers in
view of its theoretical challenges. In particular, these systems are a typical
example of nonholonomic mechanisms due to the perfect rolling constraints
on the wheel motion (no longitudinal or lateral slipping) [24].

In the absence of workspace obstacles, the basic motion tasks assigned
to a WMR may be reduced to moving between two robot postures and fol-
lowing a given trajectory. From a control viewpoint, the peculiar nature of
nonholonomic kinematics makes the second problem easier than the first; in
fact, it is known [7] that feedback stabilization at a given posture cannot be
achieved via smooth time-invariant control. This indicates that the problem
is truly nonlinear; linear control is ineffective, even locally, and innovative
design techniques are needed.

After a preliminary attempt at designing local controllers, the trajec-
tory tracking problem was globally solved in [26] by using a nonlinear feed-
back action, and independently in [12] and [11] through the use of dynamic
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feedback linearization. A recursive technique for trajectory tracking of non-
holonomic systems in chained form can also be derived from the backstep-
ping paradigm [17]. As for posture stabilization, both discontinuous and/or
time-varying feedback controllers have been proposed. Smooth time-varying
stabilization was pioneered by Samson [27, 28], while discontinuous (often,
time-varying) control was used in various forms, e.g., see [2, 9, 21, 22, 32]. A
recent addition to this class was presented in [14], where dynamic feedback
linearization has been extended to the posture stabilization problem.

While comparative simulations of several of the above methods are given
in [10] for a unicycle and in [13] for a car-like vehicle, there is no extensive
experimental testing on a single benchmark vehicle. The objective of this
chapter is therefore to evaluate and compare the practical design and perfor-
mance of control methods for trajectory tracking and posture stabilization,
highlighting potential implementation problems related to kinematic or dy-
namic nonidealities, e.g., wheel slippage, discretization and quantization of
signals, friction and backlash, actuator saturation and dynamics.

All control designs are directly presented for the case of unicycle kinemat-
ics, the most common among WMRs, and experimentally tested on the lab-
oratory prototype SuperMARIO. Nonetheless, most of the methods selected
for comparison can be generalized to vehicles with more complex kinematics.

1.1 Organization of contents

In Sect. 2. we classify the basic motion control tasks for WMRs. The model-
ing and main control properties are summarized in Sect. 3.. In Sect. 4., the
experimental setup used in our tests is described in detail.

Trajectory tracking controllers are presented in Sect. 5.. After discussing
the role of nominal feedforward commands (Sect. 5.1), three feedback laws
are illustrated. They are based respectively on tangent linearization along
the reference trajectory and linear control design (Sect. 5.2), on a nonlinear
Lyapunov-based control technique (Sect. 5.3), and on the use of dynamic
feedback linearization (Sect. 5.4). Comparative experiments on exact and
asymptotic trajectory tracking are conducted in Sect. 5.5, using an eight-
shaped desired trajectory.

The posture stabilization problem to the origin of the configuration space
is considered in Sect. 6.. Four conceptually different feedback methods are
presented, using time-varying smooth (Sect. 6.1) or nonsmooth (Sect. 6.2)
control laws, a discontinuous controller based on polar coordinates trans-
formation (Sect. 6.3), and a stabilizing law based on dynamic feedback lin-
earization (Sect. 6.4). Results on forward and parallel parking experiments
are reported.

Finally, in Sect. 7. the obtained results are summarized and compared in
terms of performance, ease of control parameters tuning, sensitivity to non-
idealities, and generalizability to other WMRs. In this way, some guidelines
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are proposed to end-users interested in implementing control laws for WRMs.
Open problems for further research are pointed out.

2. Basic motion tasks

The basic motion tasks that we consider for a WMR in an obstacle-free
environment are (see Fig. 2.1):

– Point-to-point motion: The robot must reach a desired goal configuration
starting from a given initial configuration.

– Trajectory following : A reference point on the robot must follow a trajec-
tory in the cartesian space (i.e., a geometric path with an associated timing
law) starting from a given initial configuration.

(a)

start

goal

(b)

trajectory

time
t

e  = (e ,e )x y

start

p

Figure 2.1. Basic motion tasks for a WMR: (a) point-to-point motion; (b) trajec-
tory following

Execution of these tasks can be achieved using either feedforward commands,
or feedback control, or a combination of the two. Indeed, feedback solutions
exhibit an intrinsic degree of robustness. However, especially in the case of
point-to-point motion, the design of feedback laws for nonholonomic systems
has to face a serious structural obstruction, as we will show in Sect. 3.; con-
trollers that overcome such difficulty may lead to unsatisfactory transient
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performance. The design of feedforward commands is instead strictly related
to trajectory planning, whose solution should take into account the specific
nonholonomic nature of the WMR kinematics.

When using a feedback strategy, the point-to-point motion task leads to a
state regulation control problem for a point in the robot state space — posture
stabilization is another frequently used term. Without loss of generality, the
goal can be taken as the origin of the n-dimensional robot configuration
space. As for trajectory following, in the presence of an initial error (i.e., an
off-trajectory start for the vehicle) the asymptotic tracking control problem
consists in the stabilization to zero of ep = (ex, ey), the two-dimensional
cartesian error with respect to the position of a moving reference robot (see
Fig. 2.1b).

Contrary to the usual situation, tracking is easier than regulation for a
nonholonomic WMR. An intuitive explanation of this can be given in terms
of a comparison between the number of controlled variables (outputs) and
the number of control inputs. For the unicycle-like vehicle of Sect. 3., two
input commands are available while three variables (x, y, and the orientation
θ) are needed to determine its configuration. Thus, regulation of the WMR
posture to a desired configuration implies zeroing three independent config-
uration errors. When tracking a trajectory, instead, the output ep has the
same dimension as the input and the control problem is square.

3. Modeling and control properties

Let q ∈ Q be the n-vector of generalized coordinates for a wheeled mobile
robot. Pfaffian nonholonomic systems are characterized by the presence of
n −m non-integrable differential constraints on the generalized velocities of
the form

A(q)q̇ = 0. (3.1)

For a WMR, these arise from the rolling without slipping condition for the
wheels. All feasible instantaneous motions can then be generated as

q̇ = G(q)w, w ∈ IRm, (3.2)

where the columns gi, i = 1, . . . ,m, of the n×m matrix G(q) are chosen so
as to span the null space of matrix A(q). Different choices are possible for
G, according to the physical interpretation that can be given to the ‘weights’
w1, . . . , wm. Equation (3.2), which is called the (first-order) kinematic model
of the system, represents a driftless nonlinear system.

The simplest model of a nonholonomic WMR is that of the unicycle,
which corresponds to a single upright wheel rolling on the plane (top view
in Fig. 3.1). The generalized coordinates are q = (x, y, θ) ∈ Q = IR2 × SO1

(n = 3). The constraint that the wheel cannot slip in the lateral direction is
given in the form (3.1) as
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Figure 3.1. Relevant variables for the unicycle (top view)

ẋ sin θ − ẏ cos θ = 0.

A kinematic model is thus
⎡

⎣

ẋ
ẏ
θ̇

⎤

⎦ = g1(q)v + g2(q)ω =

⎡

⎣

cos θ
sin θ

0

⎤

⎦ v +

⎡

⎣

0
0
1

⎤

⎦ω, (3.3)

where v and ω (respectively, the linear velocity of the wheel and its angular
velocity around the vertical axis) are assumed as available control inputs
(m = 2). As we will show in Sect. 4., this model is equivalent to that of
SuperMARIO.

System (3.3) displays a number of structural control properties, most of
which actually hold more in general for eq. (3.2).

3.1 Controllability at a point

The tangent linearization of eq. (3.3) at any point qe is the linear system

˙̃q =

⎡

⎣

cos θe
sin θe

0

⎤

⎦ v +

⎡

⎣

0
0
1

⎤

⎦ω, q̃ = q − qe,

that is clearly not controllable. This implies that a linear controller will never
achieve posture stabilization, not even in a local sense. In order to study the
controllability of the unicycle, we need therefore to use tools from nonlinear
control theory [16]. It is easy to check that the accessibility rank condition is
satisfied globally (at any qe), since

rank [g1 g2 [g1, g2] ] = 3 = n, (3.4)
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being the Lie bracket [g1, g2] of the two input vector fields

[g1, g2] =
∂g2

∂q
g1 −

∂g1

∂q
g2 =

⎡

⎣

sin θ
− cos θ

0

⎤

⎦ .

Since the system is driftless, condition (3.4) implies its controllability.
Controllability can also be shown constructively, i.e., by providing an ex-

plicit sequence of maneuvers bringing the robot from any start configuration
(xs, ys, θs) to any desired goal configuration (xg, yg, θg). Since the unicycle
can rotate on itself, this task is simply achieved by an initial rotation on
(xs, ys) until the unicycle is oriented toward (xg, yg), followed by a transla-
tion to the goal position, and by a final rotation on (xg, yg) so as to align θ
with θg.

As for the stabilizability of system (3.3) to a point, the failure of the pre-
vious linear analysis indicates that exponential stability cannot be achieved
by smooth feedback [31]. Things turn out to be even worse: if smooth (in
fact, even continuous) time-invariant feedback laws are used, Lyapunov sta-
bility is out of reach. This negative result is established on the basis of a
necessary condition due to Brockett [6]: smooth stabilizability of a driftless
regular system (i.e., such that the input vector fields are well defined and
linearly independent at qe) requires a number of inputs equal to the number
of states.

The above obstruction has a deep impact on the control design. In fact,
to obtain a posture stabilizing controller it is either necessary to give up
the continuity requirement and/or to resort to time-varying control laws. In
Sect. 6. we shall pursue both approaches.

3.2 Controllability about a trajectory

Given a desired cartesian motion for the unicycle, it may be convenient to
generate a corresponding state trajectory qd(t) = (xd(t), yd(t), θd(t)). In order
to be feasible, the latter must satisfy the nonholonomic constraint on the
vehicle motion or, equivalently, be consistent with eq. (3.3). The generation
of qd(t) and of the corresponding reference velocity inputs vd(t) and ωd(t)
will be addressed in Sect. 5..

Defining the state tracking error as q̃ = q− qd and the input variations as
ṽ = v − vd and ω̃ = ω − ωd, the tangent linearization of system (3.3) about
the reference trajectory is

˙̃q =

⎡

⎣

0 0 −vd sin θd
0 0 vd cos θd
0 0 0

⎤

⎦q̃+

⎡

⎣

cos θd 0
sin θd 0

0 1

⎤

⎦

[

ṽ
ω̃

]

= A(t)q̃+B(t)

[

ṽ
ω̃

]

. (3.5)

Since the linearized system is time-varying , a necessary and sufficient con-
trollability condition is that the controllability Gramian is nonsingular. How-
ever, a simpler analysis can be conducted by defining the state tracking error
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through a rotation matrix as

q̃R =

⎡

⎣

cos θd sin θd 0
− sin θd cos θd 0

0 0 1

⎤

⎦ q̃.

Using eq. (3.5), we obtain

˙̃qR =

⎡

⎣

0 ωd 0
−ωd 0 vd

0 0 0

⎤

⎦ q̃R +

⎡

⎣

1 0
0 0
0 1

⎤

⎦

[

ṽ
ω̃

]

. (3.6)

When vd and ωd are constant, the above linear system becomes time-invariant
and controllable, since matrix

C = [B AB A2B ] =

⎡

⎣

1 0 0 0 −ω2
d vdωd

0 0 −ωd vd 0 0
0 1 0 0 0 0

⎤

⎦

has rank 3 provided that either vd or ωd are nonzero. Therefore, we conclude
that the kinematic system (3.3) can be locally stabilized by linear feedback
about trajectories which consist of linear or circular paths, executed with
constant velocity.

In Sect. 5. we shall see that it is possible to use linear design techniques in
order to obtain local stabilization for arbitrary feasible trajectories, provided
they do not come to a stop.

3.3 Feedback linearizability

Based on the previous discussion, it is easy to see that the driftless nonholo-
nomic system (3.2) cannot be transformed into a linear controllable one using
static state feedback. In particular, for the unicycle (3.3) the controllability
condition (3.4) implies that the distribution generated by vector fields g1

and g2 is not involutive, thus violating the necessary condition for full state
feedback linearizability [16].

However, when matrix G(q) in eq. (3.2) has full column rank, m equa-
tions can always be transformed via feedback into simple integrators (input-
output linearization and decoupling). The choice of the linearizing outputs
is not unique and can be accommodated for special purposes. An interesting
example is the following. Define the two outputs as

y1 = x + b cos θ

y2 = y + b sin θ,

with b ̸= 0, i.e., the cartesian coordinates of a point B displaced at a distance
b along the main axis of the unicycle (see Fig. 3.1).
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Using the globally defined state feedback

[

v
ω

]

=

[

cos θ sin θ

− sin θ/b cos θ/b

]

[

u1

u2

]

,

the unicycle is equivalent to

ẏ1 = u1

ẏ2 = u2

θ̇ =
u2 cos θ − u1 sin θ

b
.

As a consequence, a linear feedback controller for u = (u1, u2) will make the
point B track any reference trajectory, even with discontinuous tangent to
the path (e.g., a square without stopping at corners). Moreover, it is easy
to show that the internal state evolution θ(t) is bounded. This approach,
however, will not be pursued in this chapter because of its limited interest
for more general kinematics.

For exact linearization purposes, one may also resort to the more general
class of dynamic state feedback. In this case, the conditions for full state
linearization are less stringent and turn out to be satisfied for a large class of
nonholonomic WMRs. However, there is a potential control singularity that
has to be considered carefully. The use of dynamic feedback linearization will
be illustrated later both for asymptotic trajectory tracking (Sect. 5.) and for
posture stabilization (Sect. 6.).

3.4 Chained forms

The existence of canonical forms for kinematic models of nonholonomic robots
allows a general and systematic development of both open-loop and closed-
loop control strategies. The most useful canonical structure is the chained
form, which in the case of two-input systems is

ż1 = u1

ż2 = u2

ż3 = z2u1 (3.7)

...

żn = zn−1u1.

It has been shown that a two-input driftless nonholonomic system with up to
n = 4 generalized coordinates can always be transformed in chained form by
static feedback transformation [23]. As a matter of fact, most (but not all)
WMRs can be transformed in chained form.

For the kinematic model (3.3) of the unicycle, we introduce the following
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globally defined coordinate transformation

z1 = θ

z2 = x cos θ + y sin θ

z3 = x sin θ − y cos θ

and static state feedback

v = u2 + z3u1

ω = u1,
(3.8)

obtaining
ż1 = u1

ż2 = u2

ż3 = z2u1.
(3.9)

Note that (z2, z3) is the position of the unicycle in a rotating left-handed
frame having the z2 axis aligned with the vehicle orientation (see Fig. 3.1).
Equation (3.9) is another example of static input-output linearization, with
z1 and z2 as linearizing outputs. We note also that the transformation in
chained form is not unique (see, e.g., [10]).

4. Target vehicle: SuperMARIO

The experimental comparison of the control methods to be reviewed in this
chapter has been performed on the mobile robot SuperMARIO, built in the
Robotics Laboratory of our Department (Fig. 4.1).

4.1 Physical description

SuperMARIO is a two-wheel differentially-driven vehicle, a mobility config-
uration found in many wheeled mobile robots. The two wheels have radius
r = 9.93 cm and are mounted on the same axle of length d = 29 cm. The
wheel radius includes also the o-ring used to prevent slippage; the rubber
is stiff enough that point contact with the ground can be assumed. A small
passive off-centered wheel is used as a caster, mounted in the front of the
vehicle at a distance of 29 cm from the rear axle. The aluminum chassis of
the robot measures 46×32×30.5 cm (l/w/h) and contains two motors, trans-
mission elements, electronics, and four 12 V batteries. The total weight of the
robot (including batteries) is about 20 kg and its center of mass is located
slightly in front of the rear axle. This design choice limits the disturbance on
robot motion induced by sudden reorientation of the caster. Each wheel is
independently driven by a DC servomotor (by MCA) supplied at 24 V with a
peak torque of 0.56 Nm. Each motor is equipped with an incremental encoder
counting ne = 200 pulses/turn and a gearbox with reduction ratio nr = 20.
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Figure 4.1. The wheeled mobile robot SuperMARIO

On-board electronics multiplies by a factor m = 4 the number of pulses/turn
of the encoders, representing the angular increments with 16 bits.

SuperMARIO is a low-cost prototype and presents therefore the typical
nonidealities of electromechanical systems, namely friction, gear backlash,
wheel slippage, actuator deadzone and saturation. These limitations clearly
affect control performance. In addition, all controllers have been designed
on the basis of a purely kinematic model. However, due to robot and ac-
tuator dynamics (masses and rotational inertias), velocity commands with
discontinuous profile will not be exactly realized by the vehicle.

4.2 Control system architecture

SuperMARIO has a two-level control architecture (see Fig. 4.2). High-level
control algorithms (including reference motion generation) are written in C++

and run with a sampling time of Ts = 50 ms on a remote server (a 300 MHz
Pentium II), which also provides a user interface with real-time visualization
as well as a simulation environment. The PC communicates through a radio
modem with serial communication boards on the robot. The maximum speed
of the radio link is 4800 bit/s. Wheel angular velocity commands ωL and ωR

are sent to the robot and encoder measures ∆φL and ∆φR are received for
odometric computations.

The low-level control layer is in charge of the execution of the high-level
velocity commands. For each wheel, an 8-bit ST6265 microcontroller imple-
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Figure 4.2. Control architecture of SuperMARIO

ments a digital PID with a cycle time of Tc = 5 ms. Two power amplifiers
drive the motors with a 51 KHz PWM voltage.

Custom interpolation algorithms have been developed on the PC so as
to reduce the effect of quantization errors and communication delays in the
reconstruction of the robot posture from the odometric information provided
by the encoders. For all control schemes, an additional filtering of high-level
velocity commands is included to account for vehicle and actuator dynamics.
Simple first-order linear filters smooth possible discontinuities in the velocity
profiles.

4.3 Kinematics

The kinematic model of SuperMARIO is given by eq. (3.3), i.e., is equivalent
to that of a unicycle. However, the actual commands are the angular velocities
ωR and ωL of the right and left wheel, respectively, rather than the driving
and steering velocities v and ω. There is, however, a one-to-one mapping
between these velocities:

v =
r (ωR + ωL)

2
, ω =

r (ωR − ωL)

d
. (4.1)

A calibration procedure has also been developed to estimate the actual wheel
radii and axle length.

The reconstruction of the current robot configuration is based on incre-
mental encoder data (odometry). Let ∆φR and ∆φL be the angular wheel
displacements measured during the sampling time Ts by the encoders. From
eq. (4.1), we obtain the linear and angular displacements of the robot as

∆s =
r

2
(∆φR +∆φL) , ∆θ =

r

d
(∆φR −∆φL) .

The estimate of the posture at time tk = kTs is computed as

q̂k =

⎡

⎣

x̂k

ŷk
θ̂k

⎤

⎦ = q̂k−1 +

⎡

⎣

cos θ̄k 0
sin θ̄k 0

0 1

⎤

⎦

[

∆s
∆θ

]

,
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where1

θ̄k = θ̂k−1 +
∆θ

2
.

Robot localization using the above odometric prediction (commonly referred
to as dead reckoning) is accurate enough in the absence of wheel slippage and
backlash. These effects are however largely reduced when the velocity is kept
reasonably small and the number of backup maneuvers is limited.

4.4 Control constraints

Because of the bounded velocity capability of the motors, each wheel can
achieve a maximum angular velocity Ω. Through eq. (4.1), we obtain bounds
on the driving and steering velocities:

|v| ≤ Ωr, |ω| ≤ 2Ωr

d
.

There is, however, a more stringent constraint due to the limited reso-
lution of the digital low-level control layer. In fact, the linear displacement
resolution ∆smin of the robot can be computed from the previous data as

∆smin =
2πr

mne nr
=

19.86π

4 · 200 · 20
≃ 0.0039 cm.

This value corresponds to the least significant bit of the encoder, so that
the average quantization error will be less than 2 hundreds of mm. In view of
the 8-bit resolution of the on-board velocity microcontroller and of the PWM
circuit (having fm = 1/Tc = 200 Hz as minimum pulse frequency), the actual
linear velocity command has the following threshold and saturation levels

vm = fm∆smin ≃ 0.78 cm/s, vM = vm ·
(

28 − 1
)

= 198.9 cm/s.

To prevent as much as possible wheel slippage, in our control software
we have imposed the following even more conservative bounds on high-level
velocity commands:

|v| ≤ vmax = 0.3 m/s, |ω| ≤ ωmax = 0.5 rad/s.

With these saturations, it is necessary to perform a suitable velocity scaling
so as to preserve the curvature radius corresponding to the nominal velocities
v and ω. The actual commands vc and ωc are then computed by defining

σ = max

{

|v|
vmax

,
|ω|
ωmax

, 1

}

,

and letting vc = v and ωc = ω if σ = 1, while

if σ = |v|/vmax then vc = sign(v) vmax, ωc = ω/σ,

else vc = v/σ, ωc = sign(ω)ωmax.

1 Use of the average value θ̄k of the robot orientation is equivalent to the numerical
integration of eq. (3.3) via a 2-nd order Runge-Kutta method.
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5. Trajectory tracking

The solution of the asymptotic tracking problem requires the combination of
a nominal feedforward command with a feedback action on the error. In the
control schemes to be presented, this error will be defined with respect to ei-
ther the reference output trajectory (output error) or an associated reference
state trajectory (state error).

5.1 Feedforward command generation

Assume that the representative point (x, y) of the unicycle must follow the
cartesian trajectory (xd(t), yd(t)), with t ∈ [0, T ] (possibly, T → ∞). From
the kinematic model (3.3) one has

θ = ATAN2 (ẏ, ẋ) + kπ, k = 0, 1, (5.1)

where ATAN2 is the four-quadrant inverse tangent function (undefined only
if both arguments are zero). Therefore, the nominal feedforward commands
are

vd(t) = ±
√

ẋ2
d(t) + ẏ2

d(t) (5.2)

ωd(t) =
ÿd(t)ẋd(t)− ẍd(t)ẏd(t)

ẋ2
d(t) + ẏ2

d(t)
, (5.3)

having differentiated eq. (5.1) w.r.t. time in order to compute ωd. The chosen
sign for vd(t) will determine forward or backward motion of the vehicle. We
note that, in order to be exactly reproducible using vd(t) and ωd(t), the
desired cartesian motion (xd(t), yd(t)) should be twice differentiable in [0, T ].

A remarkable property of the unicycle is that, given an initial posture and
a consistent desired output trajectory (xd(t), yd(t)) together with its deriva-
tives, there is a unique associated state trajectory qd(t) = (xd(t), yd(t), θd(t))
which can be computed in a purely algebraic way2, since

θd(t) = ATAN2 (ẏd(t), ẋd(t)) + kπ, k = 0, 1, (5.4)

where the value of k is chosen so that θd(0) = θ(0). If k = 1, a backward
motion will result. Therefore, the nominal orientation θd(t) may be computed
off-line and used for defining a state trajectory error.

Note the following facts.

– When the desired linear velocity vd(t) is zero for some t̄, neither the nominal
angular velocity nor the nominal orientation are defined from eq. (5.3) and
eq. (5.4), respectively. This may occur at the initial instant, if a smooth
start is specified, or at a cusp along the geometric path underlying the

2 This is related to the fact that (x, y) is a flat output for the unicycle [15] or,
equivalently, a linearizing output under dynamic feedback (see Sect. 5.4).
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cartesian trajectory (xd(t), yd(t)). For the first case, one can use (if avail-
able) higher-order differential information about (xd(t), yd(t)) at t = 0 in
order to determine the consistent initial orientation and the initial angular
velocity command. For the second case, a continuous motion is guaran-
teed by keeping the same orientation attained at t̄−; by using de L’Hôpital
analysis in eq. (5.3), one can also compute the value of ωd(t̄ ).

– More in general, the reference trajectory may be specified by separating the
geometric aspects of the path (parameterized by a scalar s) from the timing
law s = s(t) used for path execution. The driftless nature of the kinematic
model of a WMR allows to overcome in this way the above ‘zero velocity’
problem. For the unicycle, we can rewrite purely geometric relationships
as

⎡

⎣

dx/ds
dy/ds
dθ/ds

⎤

⎦ =

⎡

⎣

cos θ
sin θ

0

⎤

⎦ v′ +

⎡

⎣

0
0
1

⎤

⎦ω′,

where the time commands are recovered as

v(t) = v′(s)ṡ(t), ω(t) = ω′(s)ṡ(t).

Zero-velocity points with well-defined geometric tangent (e.g., cusps) are
then obtained for ṡ(t̄ ) = 0. The feedforward pseudo-velocity commands
v′d(s) and ω′d(s) are computed by replacing in eqs. (5.2–5.3) time derivatives
with space derivatives.

5.2 Linear control design

The simplest trajectory tracking control design is based on tangent lineariza-
tion along the reference trajectory. Following [10], it is worth to reconsider
the linearization procedure of the unicycle around the trajectory. Define the
state tracking error e as

⎡

⎣

e1

e2

e3

⎤

⎦ =

⎡

⎣

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤

⎦

⎡

⎣

xd − x
yd − y
θd − θ

⎤

⎦ . (5.5)

The difference between e and q̃R of Sect. 2. is in the rotation matrix, which is
computed here at the current orientation, and in a change of sign in the right
hand side. Using the following nonlinear transformation of velocity inputs

v = vd cos e3 − u1

ω = ωd − u2,
(5.6)

the error dynamics becomes

ė =

⎡

⎣

0 ωd 0
−ωd 0 0

0 0 0

⎤

⎦ e +

⎡

⎣

0
sin e3

0

⎤

⎦ vd +

⎡

⎣

1 0
0 0
0 1

⎤

⎦

[

u1

u2

]

. (5.7)
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Linearizing eq. (5.7) around the reference trajectory, we obtain the same
linear time-varying equations (3.6), now with state e and input (u1, u2).

Define the linear feedback law

u1 = −k1 e1

u2 = −k2 sign(vd(t)) e2 − k3 e3.
(5.8)

A desired closed-loop characteristic equation

(λ+ 2ζa)(λ2 + 2ζaλ+ a2), ζ, a > 0,

namely having constant eigenvalues (one negative real at −2ζa and a complex
pair with natural angular frequency a > 0 and damping coefficient ζ ∈ (0, 1))
can be obtained by choosing the gains in eq. (5.8) as

k1 = k3 = 2ζa, k2 =
a2 − ωd(t)2

|vd(t)|
.

However, k2 will go to infinity (i.e., an infinite control effort would be required
for the same transient performance) as vd → 0. Therefore, a convenient gain
scheduling is achieved by letting a = a(t) =

√

ω2
d(t) + bv2

d(t) so that

k1 = k3 = 2ζ
√

ω2
d(t) + bv2

d(t), k2 = b |vd(t)|, (5.9)

where the factor b > 0 has been introduced as an additional degree of freedom.
According to the controllability analysis in Sect. 2., these gains gracefully go
to zero when local controllability around the (state) trajectory is lost because
the latter stops.

In terms of the original control inputs, this design leads to the nonlinear
time-varying controller

v = vd cos(θd − θ) + k1 [cos θ(xd − x) + sin θ(yd − y)]
(5.10)

ω = ωd + k2 sign(vd) [cos θ(xd − x)− sin θ(yd − y)] + k3(θd − θ).

It should be emphasized that, even if the closed-loop eigenvalues are con-
stant and with negative real part, this control law does not guarantee the
asymptotic stability of the state tracking error e, because the system is still
time-varying. A complete Lyapunov-based stability analysis can be however
carried out by including a simple nonlinear modification, as shown hereafter.

5.3 Nonlinear control design

Following [27], we present now a nonlinear design for trajectory tracking.
Consider again eq. (5.7). Define

u1 = −k1(vd(t),ωd(t)) e1

u2 = −k̄2 vd(t)
sin e3
e3

e2 − k3(vd(t),ωd(t)) e3,
(5.11)
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with constant k̄2 > 0 and positive, continuous gain functions k1(·, ·) and
k3(·, ·).

Theorem 5.1. Assuming that vd and ωd are bounded with bounded deriva-
tives, and that vd(t) ̸→ 0 or ωd(t) ̸→ 0 when t → ∞, the control law (5.11)
globally asymptotically stabilizes the origin e = 0.

Proof. (Sketch of) It is based on the use of the Lyapunov function

V =
k̄2

2

(

e2
1 + e2

2

)

+
e2
3

2
,

whose time derivative along the solutions of the closed-loop system is nonin-
creasing since

V̇ = −k1k̄2e
2
1 − k3e

2
3 ≤ 0.

Thus, ∥e(t)∥ is bounded, V̇ (t) is uniformly continuous, and V (t) tends to
some limit value. Using Barbalat lemma, V̇ (t) tends to zero. From this and
analyzing the system equations, one can show that (v2

d + ω2
d)e

2
i (i = 1, 2, 3)

tends to zero so that, from the persistency of the (state) trajectory, the result
follows.

Merging eqs. (5.5), (5.6), and (5.11), the resulting control law is

v = vd cos(θd − θ) + k1(vd,ωd) [cos θ(xd − x) + sin θ(yd − y)]
(5.12)

ω = ωd + k̄2 vd
sin(θd − θ)
θd − θ

[cos θ(xd − x)−sin θ(yd − y)] + k3(vd,ωd)(θd − θ).

Taking advantage of the previous linear analysis, we can choose the gain
functions k1 and k2 and the constant gain k̄2 as

k1(vd(t),ωd(t)) = k3(vd(t),ωd(t)) = 2ζ
√

ω2
d(t) + bv2

d(t), k̄2 = b,

with b > 0 and ζ ∈ (0, 1).

5.4 Dynamic feedback linearization

A nonlinear controller for trajectory tracking based on exact dynamic feed-
back linearization is now designed following [11, 12].

With reference to the general class of nonholonomic driftless systems (3.2),
the dynamic feedback linearization problem consists in finding, if possible, a
dynamic state feedback compensator of the form

ξ̇ = a(q, ξ) + b(q, ξ)u
w = c(q, ξ) + d(q, ξ)u,

(5.13)

with ν-dimensional state ξ and m-dimensional external input u, such that the
closed-loop system (3.2)–(5.13) is equivalent, under a state transformation
z = T (q, ξ), to a linear controllable system.
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Only necessary or sufficient (but no necessary and sufficient) conditions
exist for the solution of the dynamic feedback linearization problem. Con-
structive algorithms, which are essentially based on input-output decoupling,
can be found in [16].

The starting point is the definition of an appropriate m-dimensional sys-
tem output η = h(q), to which a desired behavior can be assigned (in our case,
track a desired trajectory). One then proceeds by successively differentiating
the output until the input appears in a nonsingular way. At some stage, the
addition of integrators on a subset of the input channels may be necessary in
order to avoid subsequent differentiation of the original inputs. This dynamic
extension algorithm builds up the state ξ of the dynamic compensator (5.13).
The algorithm terminates after a finite number of differentiations whenever
the system is invertible from the chosen output. If the sum of the output
differentiation orders equals the dimension n+ν of the extended state space,
full input-state-output linearization is also obtained. The closed-loop system
is then equivalent to a set of decoupled input-output chains of integrators
from ui to ηi (i = 1, . . . ,m).

We illustrate this exact linearization procedure for the unicycle model (3.3).
Define the linearizing output vector as η = (x, y). Differentiation w.r.t. time
then yields

η̇ =

[

ẋ
ẏ

]

=

[

cos θ 0
sin θ 0

] [

v
ω

]

,

showing that only v affects η̇, while the angular velocity ω cannot be recovered
from this first-order differential information. In order to proceed, we need
therefore to add an integrator (whose state is denoted by ξ) on the linear
velocity input

v = ξ, ξ̇ = a =⇒ η̇ = ξ

[

cos θ
sin θ

]

,

being the new input a the linear acceleration of the unicycle. Differentiating
further

η̈ = ξ̇

[

cos θ
sin θ

]

+ ξθ̇

[

− sin θ
cos θ

]

=

[

cos θ −ξ sin θ
sin θ ξ cos θ

] [

a
ω

]

and the matrix multiplying the modified input (a,ω) is nonsingular provided
that ξ ̸= 0. Under this assumption, we can define

[

a
ω

]

=

[

cos θ −ξ sin θ
sin θ ξ cos θ

]−1 [
u1

u2

]

so as to obtain

η̈ =

[

η̈1
η̈2

]

=

[

u1

u2

]

= u. (5.14)
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The resulting dynamic compensator is

ξ̇ = u1 cos θ + u2 sin θ

v = ξ (5.15)

ω =
u2 cos θ − u1 sin θ

ξ
.

Since the dynamic compensator is one-dimensional, we have n+ν = 3+1 = 4,
equal to the total number of output differentiations in eq. (5.14). Therefore,
in the new coordinates

z1 = x
z2 = y
z3 = ẋ = ξ cos θ
z4 = ẏ = ξ sin θ,

(5.16)

the extended system is fully linearized in a controllable form and described by
the two chains of second-order input-output integrators given by eq. (5.14),
rewritten as

z̈1 = u1

z̈2 = u2.
(5.17)

Note that the dynamic feedback linearizing controller (5.15) has a po-
tential singularity at ξ = v = 0, i.e., when the unicycle is not rolling. The
occurrence of such singularity in the dynamic extension process has been
shown to be structural for nonholonomic systems [12]. This difficulty must
be obviously taken into account when designing control laws on the equivalent
linear model.

Assume the robot must follow a smooth output trajectory (xd(t), yd(t))
which is persistent, i.e., such that the nominal control input vd = (ẋ2

d+ ẏ2
d)

1/2

along the trajectory does never go to zero. On the equivalent linear and de-
coupled system (5.17), it is straightforward to design a globally exponen-
tially stabilizing feedback for the desired trajectory (with linear cartesian
transients) as

u1 = ẍd(t) + kp1(xd(t)− x) + kd1(ẋd(t)− ẋ)
u2 = ÿd(t) + kp2(yd(t)− y) + kd2(ẏd(t)− ẏ),

(5.18)

with PD gains chosen as kpi > 0, kdi > 0, for i = 1, 2.
In the implementation, velocities ẋ and ẏ can be computed via the last

two expressions in eq. (5.16), as a function of the robot state and of the
compensator state ξ. Alternatively, one can use estimates of ẋ and ẏ obtained
from odometric measurements. This solution is more robust with respect to
unmodeled dynamics.

We conclude the discussion on trajectory tracking via dynamic feedback
linearization by offering some remarks:
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– The state of the dynamic compensator should be correctly initialized at
the value ξ(0) = vd(0). This guarantees exact trajectory tracking for a
matched initial state of the robot. In this case, the control law (5.15–5.18)
reduces to the pure feedforward action.

– Being based purely on an output tracking error definition, this method
requires neither the explicit computation of θd(t) nor the measure of the
orientation angle θ(t).

– Even for smooth persistent trajectories, problems may arise if the actual
command v = ξ crosses zero during an initial transient. However, this
situation can be avoided by suitably choosing the initial state of the dy-
namic compensator. For example, a simple way to keep the actual com-
mands bounded is to reset the state ξ whenever its value falls below a
given threshold. This strategy results in an input command v with isolated
discontinuities with respect to time.

5.5 Experiments

In the following we report experimental results of SuperMARIO following the
eight-shaped reference trajectory of Fig. 5.1, defined by

xd(t) = sin
t

10
, yd(t) = sin

t

20
, t ∈ [0, T ].

The trajectory starts from the origin with θd(0) = π/6 rad. A full cycle is
completed in T = 2π · 20 ≈ 125 s. Note that the reference initial velocities
are

vd(0) ≃ 0.1118 m/s, ωd(0) = 0 rad/s.

In the first set of experiments, the robot configuration is initially matched
with the desired reference trajectory (i.e., with initial state q(0) = qd(0)).
Therefore, the feedforward commands (5.2–5.3) would allow exact trajectory
following in ideal conditions. However, if the unicycle starts at rest and non-
zero high-level commands vd(0) and ωd(0) are sent to the robot, due to the
actuation/vehicle dynamics there will be some transient before these veloci-
ties are actually achieved at the physical low level. The addition of a feedback
action to the feedforward command is also effective in recovering the induced
state error.

Figures 5.2–5.4 show the results obtained with the linearly designed con-
troller (5.10), using the gains (5.9) with ζ = 0.7 and b = 10. The tracking of
the reference trajectory of Fig. 5.1 is indeed quite accurate. Residual errors
are mainly due to quantization and discretization of velocity commands, as
well as to other nonidealities. In particular, there is a large transient error
due to the vehicle/actuator dynamics because of the initial non-zero value
of vd(0). This is clearly shown in Fig. 5.5 which shows the norm ∥ep∥ of the
cartesian error.
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Figure 5.1. An eight-shaped reference trajectory

Similar performance is obtained with the nonlinear controller (5.12), us-
ing the same gains as above, and with the dynamic feedback linearization
controller (5.15), choosing the PD gains in eq. (5.18) as kp1 = kp2 = 1,
kd1 = kd2 = 0.7 and initializing the dynamic compensator at ξ(0) = vd(0).
To appreciate the slight improvement in performance, compare the norm ∥ep∥
of the cartesian error in Figs. 5.6 and 5.7 with the previous result in Fig. 5.5.
It is found that the average error is reduced from a value of 1 cm (linear de-
sign) to 0.5 cm (nonlinear design) and finally to 0.38 cm (dynamic feedback
linearization design).

A second set of experiments was performed letting q(0) = (0.2,−0.3,π/3)
(m,m,rad), i.e., starting with an initial state error with respect to the assigned
trajectory. Only the linearly designed controller and the dynamic feedback
controller were compared (see Figs. 5.8–5.11), using the same previous set-
tings of control parameters. The obtained transients are quite similar, al-
though a smaller overshoot is experienced with dynamic feedback lineariza-
tion, as implied by the choice of the PD gains.
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Figure 5.2. Trajectory tracking with linear feedback design: x (−−), y (−·) (m),
and θ (—) (rad) vs. time (s)
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Figure 5.3. Trajectory tracking with linear feedback design: driving velocity v
(m/s)
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Figure 5.4. Trajectory tracking with linear feedback design: steering velocity ω
(rad/s)
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Figure 5.5. Trajectory tracking with linear feedback design: norm of cartesian
error (m)
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Figure 5.6. Trajectory tracking with nonlinear feedback design: norm of cartesian
error (m)
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Figure 5.7. Trajectory tracking via dynamic feedback linearization: norm of carte-
sian error (m)
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Figure 5.8. Asymptotic trajectory tracking with linear feedback design: cartesian
motion (x, y) (m)
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Figure 5.9. Asymptotic trajectory tracking with linear feedback design: cartesian
errors ex and ey (m)
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Figure 5.10. Asymptotic trajectory tracking via dynamic feedback linearization:
cartesian motion (x, y) (m)

0 20 40 60 80 100 120 140
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Figure 5.11. Asymptotic trajectory tracking via dynamic feedback linearization:
cartesian errors ex and ey (m)
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6. Posture stabilization

As mentioned in Sect. 3., posture stabilization for nonholonomic WMRs can-
not be achieved by smooth static feedback. We shall present two controllers
based on time-varying feedback and two based on discontinuous feedback.

6.1 Smooth time-varying control

It has been shown in Sect. 5.3 that asymptotic stabilization of a state tracking
error can be achieved provided that vd(t) and ωd(t) — which introduce a time-
varying signal in the feedback control law — do not both vanish in finite time.
This observation suggests that a solution to the posture stabilization problem
can be obtained by designing a desired motion, to be used as a fictitious time-
varying reference, which asymptotically vanishes at the origin.

Following [27], the structure of a smooth time-varying stabilizing con-
troller is the same of the nonlinear trajectory tracking controller (5.11):

u1 = −k1(vd(t),ωd(t)) e1

u2 = −k̄2 vd(t)
sin e3
e3

e2 − k3(vd(t),ωd(t)) e3,
(6.1)

with the same notation used in Sect. 5.3 (in particular, eq. (5.12) is used to
generate v and ω). In this case, however, the desired trajectory is itself an ad-
ditional degree of freedom, subject to the constraint that, under control (6.1),
both the state tracking error e and the desired trajectory are asymptotically
stabilized to the origin. A simple solution is to set, for all times t, yd(t) = 0
and θd(t) = 0 (and thus ωd(t) = 0), having only xd in motion. A class of
desired velocities is given then by

vd(t) = ẋd(t) = −k4xd(t) + g(e, t), k4 > 0, (6.2)

where g(e, t) is a C2-function uniformly bounded with respect to t, together
with its partial derivative, and such that:
A1. g(0, t) = 0, for all t;
A2. there exists a diverging sequence of instants {ti}i∈N and a continuous

function α(·) for which

∥e∥ > ε > 0 ⇒
(

∂g

∂t
(e, ti)

)2

> α(ε) > 0, ∀ti.

Theorem 6.1. The smooth time-varying controller (6.1), with vd(t) given by
eq. (6.2) with A1 and A2, globally asymptotically stabilizes e = 0 and xd = 0.

Proof. (Sketch of) Using the same Lyapunov function as in Theorem 5.1, the
tracking error e(t) is shown to be bounded. Therefore, eq. (6.2) is a stable
linear system subject to an additive bounded perturbation g(e, t), so that
xd(t) and vd(t) (as well as v̇d(t)) remain bounded. Theorem 5.1 applies and
the rest of the proof uses assumptions A1 and A2 to show first that vd(t)
tends to zero, then that also ∂g

∂t (e, t) does, and concluding the convergence of
e to zero. Finally, using A2, eq. (6.2) implies that also xd(t) tends to zero.
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The heating function g(e, t) plays a key role in guaranteeing asymptotic
stability by sustaining motion as long as the error e is not zero, but it also
determines the transient behavior. Possible choices satisfying A1 and A2 in-
clude g(e, t) = ∥e∥2 sin t and, if the functions k1(·, ·) and k3(·, ·) are strictly
positive,

g(e, t) =
exp(k5e2)− 1

exp(k5e2) + 1
sin t, k5 > 0. (6.3)

We tested the performance of the time-varying control (6.1), with desired
motion given by eq. (6.2), initialized at xd(0) = 0, and heating function (6.3).
The gains have been selected as k1 = 0.5, k̄2 = 2, k3 = 1, k4 = 1, and k5 = 50.

A forward parking task from q(0) = (−1,−1, 0) (m,m,rad) to the ori-
gin is assigned. This task will be used as a baseline for comparison of all
posture stabilization methods. Figures 6.1–6.4 show that, after a relatively
fast approach, convergence of the smooth time-varying controller becomes
extremely slow when the unicycle is close to the goal. In particular, this is
evident in Fig. 6.2, a stroboscopic view of the robot motion sampled every
10 s. An inherent limitation of this control design is the large number of
backup maneuvers, executed with the unicycle approximately aligned with
the final desired orientation. The oscillation range of x is contained in the
range (−1, 1), thanks to the large value of k5. The steering velocity command
becomes very small in the final phase.

The accuracy in regulation to the origin is determined by the satisfac-
tion of the following terminal bounds, used in all the posture stabilization
experiments:

|x| < 0.2 cm, |y| < 0.2 cm, |θ| < 0.02 rad.
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Figure 6.1. Posture stabilization with smooth time-varying feedback: x (−−), y
(−·) (m), and θ (—) (rad) vs. time (s)
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Figure 6.2. Posture stabilization with smooth time-varying feedback: cartesian
motion (x, y) (m)
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Figure 6.3. Posture stabilization with smooth time-varying feedback: driving ve-
locity v (m/s)
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Figure 6.4. Posture stabilization with smooth time-varying feedback: steering ve-
locity ω (rad/s)
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6.2 Nonsmooth time-varying control

By giving up the smoothness requirement, several controllers have been pro-
posed for posture stabilization with improved transient performance. We re-
view here one of the first such designs [32], which applies to nonholonomic
systems that can be transformed into chained form. The control law is con-
tinuous in time but nonsmooth with respect to the state, which is fed back
only at uniformly sampled instants.

Consider the chained-form (3.9) as an equivalent unicycle model, and
note that the origin of the (x, y, θ) configuration space (which is the desired
posture qd) maps into the origin of the (z1, z2, z3) space. If the input u1 is
a predefined function of time, z23 = [z2 z3]T satisfies a linear time-varying
equation driven by the input u2. The command u1 is obtained by combining
a simple open-loop command, which is updated as a function of the state
only on a discrete-time basis, with a time-varying exogenous signal, in such
a way that z1 converges exponentially to zero when ∥z23∥ does. The other
input u2 is chosen so that ∥z23∥ converges to zero with an exponential rate.

In particular, let a sequence of uniformly spaced instants {t0, t1, t2, . . .}
be defined as

th = hT, T = th+1 − th > 0.

Define the control u1 as

u1(t) = k(z(th))f(t), for t ∈ [th, th+1). (6.4)

This input is a function of the state z at time t = th, while during the
interval (th, th+1) it is defined in an open-loop fashion. Choosing a smooth
and periodic function f(t), such as

f(t) =
1− cosωt

2
, ω =

2π

T
, (6.5)

u1(t) is guaranteed to be continuous in time. The control function k(z(th))
is given by

k(z(th)) = −β [z1(th) + sgn(z1(th)) γ(∥z23(th)∥)] , (6.6)

where

sgn(z1) =

{

1, if z1 ≥ 0,
−1, if z1 < 0,

and

β =
1

∫ th+1

th
f(τ)dτ

=
2

T
, γ (∥z23∥) = κ ∥z23∥

1
2 , κ > 0.

The control law for u2 is designed based on the backstepping principle [30].
Assume that the variable z2 in the third equation of the chained form

ż3 = z2u1(t) (6.7)
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is a ‘dummy’ control input zd2 . In order to stabilize this subsystem, we choose

zd2 = −λ3f3(t)z3

u1(t)
= − λ3

k(z(th))
f2(t)z3, λ3 > 0. (6.8)

It can be shown that z3 exponentially converges to zero with a rate depending
on λ3. In the presence of a transient difference z̃2 = z2−zd2 , one can also prove
that z3 exponentially converges to zero if z̃2 does. Therefore, u2 should be
designed so as to make z2 converge to zd2 , enforcing thus the desired behavior
for z3. Since the second equation of the chained form is

ż2 = u2,

this is accomplished, with exponential convergence, by choosing

u2 = −λ2(z2 − zd2) + żd2 , λ2 > 0,

where, from eq. (6.8),

żd2 = −λ3

(

2f(t)ḟ(t)
z3

k(z(th))
+ f3(t)z2

)

,

in which we have used eqs. (6.4), (6.7), and the fact that k(z(th)) is constant
over [th, th+1).

The complete nonsmooth time-varying controller is then

u1 = −k(z(th))f(t)

u2 = −(λ2 + λ3f3(t))z2 − λ3(λ2f2(t) + 2f(t)ḟ(t)) z3
k(z(th))

.
(6.9)

Equation (6.9) should be used in conjunction with eq. (3.8) in order to gen-
erate the actual velocity inputs v and ω.

Defining a class K function as a strictly increasing function h : IR+ .→ IR+

such that h(0) = 0, the main result is summarized in the following theorem.

Theorem 6.2. Consider the unicycle in chained form (3.9) under the con-
trol (6.9), with the definitions (6.5) and (6.6). Then, the origin z = 0 is
K-exponentially stable, i.e., there exist a constant λz > 0 and a class K func-
tion hz(·, T ) such that

∥z(t)∥ ≤ hz(∥z(0)∥, T ) e−λzt, ∀z(0) ∈ IR3,∀t ≥ 0.

Proof. It is a specialization of the general proof for n-dimensional chained-
form systems, see [32].

Figures 6.5–6.8 show the results of the application of the control law (6.9),
with T = 6 s and κ = 0.8, λ2 = λ3 = 0.4, for executing the baseline forward
parking task. The rate of convergence of the nonsmooth time-varying con-
troller is somewhat improved but still quite slow. A stroboscopic view of the
unicycle motion sampled every 5 s is reported in Fig. 6.6. Note that the ap-
proach in the y direction is very uniform, while maneuvers in the vicinity
of the goal are aimed at adjusting θ rather than x. This is intrinsic in the
structure of the chained form used for the control design.
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Figure 6.5. Posture stabilization with nonsmooth time-varying feedback: x (−−),
y (−·) (m), and θ (—) (rad) vs. time (s)

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.6. Posture stabilization with nonsmooth time-varying feedback: cartesian
motion (x, y) (m)
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Figure 6.7. Posture stabilization with nonsmooth time-varying feedback: driving
velocity v (m/s)
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Figure 6.8. Posture stabilization with nonsmooth time-varying feedback: steering
velocity ω (rad/s)

6.3 Control based on polar coordinates

Another technique which allows to overcome the obstruction of Brockett the-
orem is to apply a change of coordinates such that the input vector fields
of the transformed equations are singular at the origin. This approach has
been proposed in [2], where a Lyapunov-like design of a posture stabilizing
controller is carried out using a polar coordinate transformation. The control
law, once rewritten in terms of the original state variables, is discontinuous
at the origin of the configuration space Q.

With reference to Fig. 6.9, we define the following set of polar coordinates
for the unicycle. Let ρ be the distance of the reference point (x, y) of the
unicycle from the goal (the origin), γ be the angle of the pointing vector to
the goal w.r.t. the unicycle main axis, and δ be the angle of the same pointing
vector w.r.t. the x axis (orientation error), i.e.,

ρ =
√

x2 + y2

γ = ATAN2(y, x)− θ + π

δ = γ + θ.

Angles γ and δ are undefined for x = y = 0. In practice, during the vehicle
motion, when ρ → 0 one must retain the values for γ and δ assumed in the
final approaching phase. In these coordinates, the unicycle equations become

ρ̇ = − cos γ v

γ̇ =
sin γ

ρ
v − ω (6.10)

δ̇ =
sin γ

ρ
v.

The input vector field associated to v is singular for ρ = 0.
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Figure 6.9. Definition of polar coordinates for the unicycle

In order to achieve the goal posture, variables e, γ, and δ should all
converge to zero. This is guaranteed by the following result, adapted from [2].

Theorem 6.3. Consider the polar coordinate description (6.10) of the uni-
cycle and the feedback control

v = k1ρ cos γ

ω = k2γ + k1
sin γ cos γ

γ (γ + k3δ),
(6.11)

with k1 and k2 positive constants. The closed-loop system (6.10)–(6.11) is
then globally asymptotically driven to the posture (ρ, γ, δ) = (0, 0, 0).

Proof. (Sketch of) Consider the function

V =
1

2

(

ρ2 + γ2 + k3δ
2
)

,

as a candidate Lyapunov function. Its time derivative along the solutions of
the closed-loop system is nonincreasing since

V̇ = −k1 cos2γ ρ2 − k2γ
2 ≤ 0.

Thus, the state is bounded in norm, V̇ (t) is uniformly continuous, and V (t)
tends to a limit value. By Barbalat lemma, V̇ (t) tends to zero and thus also
ρ and γ do. Analyzing the closed-loop system, one can show that ρ̇ and δ̇
converge to zero, that δ converges to some finite limit δ̄ while γ̇ tends to
the finite limit −k1k3δ̄ and is uniformly continuous. Again through Barbalat
lemma, this finite limit must be zero and thus also δ converges to zero.

Figures 6.10–6.13 refer to the results of the application of controller (6.11),
with gains k1 = 1, k2 = 3 and k3 = 2, for executing the baseline forward park-
ing task. The convergence to the goal is very fast and natural. In Fig. 6.11,
a stroboscopic view of the unicycle motion sampled every 1 s is given. Both
velocity commands are saturated for 2 to 3 seconds.
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In the second experiment, a parallel parking task from q(0) = (0,−1.5, 0)
(m,m,rad) to the origin of the configuration space is assigned. The same gains
as in the previous experiment have been used. The obtained results are shown
in Figs. 6.14–6.17 and indicate that there is no backup maneuver in this case.
If the robot had been initially closer to the positive x axis, the controller (6.11)
would have automatically driven the robot backwards and then in forward
motion to the goal. This is a general property of the controller: in the final
phase, the vehicle will always approach the goal in forward motion, having
executed at most one backup maneuver.

We finally note that the behavior of the controlled system is not contin-
uous with respect to the initial state. For example, assume that the initial
configuration is x(0) = a > 0, y(0) = ε and θ(0) = 0. Positive and negative
arbitrarily small values of ε will lead to different transient motions to the
goal (in fact, symmetric with respect to the x axis).
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Figure 6.10. Posture stabilization using feedback in polar coordinates (forward
parking): x (−−), y (−·) (m), and θ (—) (rad) vs. time (s)
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Figure 6.11. Posture stabilization using feedback in polar coordinates (forward
parking): cartesian motion (x, y) (m)
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Figure 6.12. Posture stabilization using feedback in polar coordinates (forward
parking): driving velocity v (m/s)
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Figure 6.13. Posture stabilization using feedback in polar coordinates (forward
parking): steering velocity ω (rad/s)
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Figure 6.14. Posture stabilization using feedback in polar coordinates (parallel
parking): x (−−), y (−·) (m), and θ (—) (rad) vs. time (s)
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Figure 6.15. Posture stabilization using feedback in polar coordinates (parallel
parking): cartesian motion (x, y) (m)
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Figure 6.16. Posture stabilization using feedback in polar coordinates (parallel
parking): driving velocity v (m/s)
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Figure 6.17. Posture stabilization using feedback in polar coordinates (parallel
parking): steering velocity ω (rad/s)
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6.4 Dynamic feedback linearization

Following [14], we show how to extend the trajectory tracking controller based
on dynamic feedback linearization to address the posture stabilization prob-
lem, while avoiding the intrinsic singularity that occurs when the robot comes
to a stop. This simply requires an appropriate choice of the PD gains and a
suitable initialization of the dynamic compensator state ξ.

We denote by

Q∗ = {q ∈ Q : (x = 0, cosϑ ≥ 0) OR (y = 0, cosϑ = −1)}

a subset of Q which will require special attention. The remaining part Q/Q∗
of the configuration space can be partitioned in two regions:

Qr = {q ∈ Q/Q∗ : x ≥ 0}
Ql = {q ∈ Q/Q∗ : x < 0} .

The main result is the following.

Theorem 6.4. Consider the unicycle system (3.3) under the action of the
dynamic compensator (5.15). A PD control law on the cartesian error

u1 = −kp1x− kd1ẋ
u2 = −kp2y − kd2ẏ

(6.12)

yields exponential convergence from any initial configuration q(0) ∈ Q/Q∗ to
the origin, if the following assumptions hold:

A1. The control gains kpi > 0, kdi > 0 (i = 1, 2) satisfy the conditions

k2
d1 − 4kp1 = k2

d2 − 4kp2 > 0 (6.13)

kd2 − kd1 > 2
√

k2
d2 − 4kp2. (6.14)

A2. The initial state of the dynamic compensator is chosen as

ξ(0) < 0 (backward motion) if q(0) ∈ Qr

ξ(0) > 0 (forward motion) if q(0) ∈ Ql,

but its value is otherwise arbitrary, except for the additional condition

ξ(0) ̸= 2
kp1x(0) sin θ(0)− kp2y(0) cos θ(0)

kd2 − kd1
. (6.15)
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Proof. Use of control (6.12) in eq. (5.17) implies that the cartesian coor-
dinates x and y converge to zero exponentially, provided that the original
control inputs v and ω given in eq. (5.15) remain bounded. To show this, we
must prove that (i) ξ does not go to zero in finite time, and (ii) ω tends to
zero for t→∞, in spite of its denominator ξ vanishing.

(i) Since from eq. (5.16) it is ξ2 = z2
3 + z2

4 , one has ξ(t̄ ) = 0 iff
z3(t̄ ) = z4(t̄ ) = 0, for a generic instant t̄ ≥ 0. Integrating the closed-loop
system (5.17) under control (6.12), we have

z3(t) = a31e
λ11t + a32e

λ12t (6.16)

z4(t) = a41e
λ21t + a42e

λ22t, (6.17)

where coefficients akj and eigenvalues λij are easily obtained as functions of
initial state and PD gains. From these expressions and condition (6.13), it is
possible to show that a finite t̄ > 0 such that ξ(t̄ ) = 0 exists iff

ξ(0) cos θ(0)− x(0)λ11

ξ(0) cos θ(0)− x(0)λ12
= α

ξ(0) sin θ(0)− y(0)λ21

ξ(0) sin θ(0)− y(0)λ22
,

with α = λ11λ22/λ12λ21. From this, a quadratic equation in ξ(0) is derived
which has the single nonzero root

ξ(0)=
λ11x(0) sin θ(0) + λ22y(0) cos θ(0)−α(λ12x(0) sin θ(0) + λ21y(0) cos θ(0)

(1− α) sin θ(0) cos θ(0)
.

Once rewritten in terms of the PD gains, this expression leads to the forbidden
initialization condition (6.15).

(ii) First of all, it is straightforward to prove that assumption A1 implies
that the eigenvalues are real and ordered as λ11 < λ12 < λ21 < λ22 < 0.
From eq. (5.15), we rewrite ω as

ω =
−z4u1 + z3u2

ξ2
,

and using eqs. (6.16–6.17) and (6.12), the numerator of ω takes the form

−z4u1 + z3u2 = γ1e
(λ11+λ21)t + γ2e

(λ12+λ21)t + γ3e
(λ11+λ22)t + γ4e

(λ12+λ22)t,

with γi ∈ IR. Its asymptotic rate of convergence is certainly larger than 2|λ22|
due to the eigenvalue ordering. As for the denominator, squaring and adding
eqs. (6.16) and (6.17) gives

ξ2 = η1e
2λ11t + η2e

(λ11+λ12)t + η3e
2λ12t + η4e

2λ21t + η5e
(λ21+λ22)t + η6e

2λ22t,

with ηi ∈ IR. Since the asymptotic rate of convergence of this quantity is
exactly 2|λ22|, we conclude that ω tends to zero as t→∞.

To finish the proof, it is necessary to show that also the orientation θ
converges to zero. This is easily understood from the following facts:
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• The unicycle reaches the origin with a horizontal tangent (θ = 0 or π),
because y approaches zero faster than x in view of the eigenvalue ordering.

• Motion inversions do not occur since v = ξ never crosses zero, as shown in
the first part of the proof.

• The trajectory is confined to the region (either Qr or Ql) from which the
unicycle starts. In fact, x and y never change sign because the eigenvalues
are real and thanks to the choice of sign for ξ(0) in assumption A2.

Finally, also the convergence of θ to zero is exponential. Indeed, since ω goes
exponentially to zero, the same is true for its integral θ.

Some remarks are needed at this point.

– As the cartesian position transients are linear, the unicycle trajectories
obtained with the proposed controller are completely predictable and can
be easily shaped by choosing the PD control gains. Note that the unicycle
can reach the goal either with a forward or with a backward motion.

– The equality part of condition (6.13) in Theorem 6.4 is by no means nec-
essary; it is only used for deriving a closed form for the forbidden initial-
ization (6.15) of the dynamic compensator.

– In view of the discontinuity at the origin of the linearizing controller with
respect to the state (x, y, θ, ξ) of the extended system, as well as of the
fact that the initial configuration should belong to Q/Q∗, the proposed
feedback controller does not yield Lyapunov stability in a strict sense, but
simply exponential convergence.

If the initial configuration q(0) belongs to Q∗, Theorem 6.4 cannot be
applied. In fact, the PD control (6.12) would bring the unicycle to the origin
with the wrong orientation, namely, θ = π if cos θ(0) > 0, θ = ±π/2 if
cos θ(0) = 0, θ = −π if cos θ(0) = −1. In such a situation, it is necessary to
reset the compensator state at some time tv > 0, so as to invert the motion
at a configuration q ∈ Q/Q∗. A simple way to obtain this is to introduce a
via point qv in the regulation procedure, as illustrated later in this section by
the parallel parking experiment. This should not be seen as a drawback of the
method; a suitable choice of the via point allows better control of the path
shape while approaching the goal configuration. In particular, the resulting
stabilization motion contains at most one backup maneuver.

Figures 6.18–6.21 refer to the baseline forward parking task, using dy-
namic feedback linearization plus PD control with gains kp1 = 2, kd1 = 3,
kp2 = 12, kd2 = 7, and compensator initialization ξ(0) = vmax = 0.3 (m/s).
The convergence to the goal is fast and very natural, as shown in Fig. 6.19,
a stroboscopic view of the robot motion sampled every 1.5 s. Note that sat-
uration occurs on both inputs during the transient phase.
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Figure 6.18. Posture stabilization using dynamic feedback linearization (forward
parking): x (−−), y (−·) (m), and θ (—) (rad) vs. time (s)
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Figure 6.19. Posture stabilization via dynamic feedback linearization (forward
parking): cartesian motion (x, y) (m)
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Figure 6.20. Posture stabilization via dynamic feedback linearization (forward
parking): driving velocity v (m/s)
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Figure 6.21. Posture stabilization via dynamic feedback linearization (forward
parking): steering velocity ω (rad/s)

We also report the results for a parallel parking task with initial con-
figuration given by q(0) = (0,−1, 0) (m,m,rad). The via point is chosen as
qv = (−1,−0.6, 0) (m,m,rad). The PD gains are the same as before, while
the compensator state initialization is chosen here as ξ(0) = −vmax for the
first phase, performed in backward motion, and ξ(tv) = vmax for the second
phase, which is started in a neighborhood of qv and performed in forward
motion. The results are shown in Figs. 6.22–6.25.

The simple first-order linear filter introduced to account for actuator dy-
namics is also effective in smoothing the discontinuity in the driving velocity
generated by the reset procedure. On the other hand, the presence of the
same filter for the steering velocity, coupled with the software velocity satu-
ration, neutralizes the effect of the singularity in ω due to the zero crossing
of the filtered driving velocity.
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Figure 6.22. Posture stabilization via dynamic feedback linearization (parallel
parking): x (−−), y (−·) (m), and θ (—) (rad) vs. time (s)
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Figure 6.23. Posture stabilization via dynamic feedback linearization (parallel
parking): cartesian motion (x, y) (m)
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Figure 6.24. Posture stabilization via dynamic feedback linearization (parallel
parking): driving velocity v (m/s)
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Figure 6.25. Posture stabilization via dynamic feedback linearization (parallel
parking): steering velocity ω (rad/s)
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7. Guidelines for end-users

7.1 Summary and comparison

We have performed several motion tasks with SuperMARIO using the pre-
sented control laws. The experimental tests presented in this chapter are
representative of the average performance of the controllers. We summarize
hereafter our acquired experience in general observations that can be useful
guidelines for implementation of the same control strategies for other vehicles.

First of all, the computational load for all methods is quite similar in the
case of the unicycle. Basically, both trajectory tracking and posture stabi-
lization controllers can be implemented with on-board computing power. Our
choice of separating high-level control routines, performed on a remote server,
from the low-level control loops in charge of realizing the reference velocity
commands on each wheel reflects only the choice of a modular structure. It
is however expected that such decomposition would become more convenient
or even mandatory for wheeled mobile robots with more complex kinematics,
such as a tractor vehicle towing a number of trailers.

The three reviewed control methods for trajectory following tasks show
similar performance. All of them can be generalized to more complex vehi-
cles, provided their models are transformable in chained-form. Such gener-
alizations can be found in [28] and [13]. From the point of view of control
parameters tuning, especially for more complex WMRs, the dynamic feed-
back linearization technique promises to be simpler since it always boils down
to the choice of stabilizing gains for a chain of integrators [13]; in particu-
lar, it can be carried out on the original equations without resorting to the
transformation in chained form.

In Table 7.1, the control results for posture stabilization tasks are com-
pared in terms of performance, ease of control parameters tuning, sensitivity
to nonidealities, generalizability to more complex nonholonomic WMRs, and
relations with the design of tracking controllers.

Time-varying controllers, both smooth and nonsmooth, exhibit a rather
slow final convergence to the goal in spite of substantial progress during the
first motion phase. In general, the nonsmooth controller should behave better
because it achieves an exponential rate of convergence, but the dependence
of this rate on the available gains is critical. The oscillatory behavior of
the vehicle during the approach to the goal, which makes the motion rather
erratic, is an intrinsic characteristic of both time-varying control laws. In
fact, the exogenous time dependence needed for stabilization is introduced
through the oscillatory motion of a virtual reference vehicle in the method
of Sect. 6.1 and through the periodic time function weighting the first com-
mand in the method of Sect. 6.2. In any case, the presence of several motion
inversions makes these methods quite sensitive to mechanical nonidealities
(e.g., backlash) of the wheels. This situation may introduce a remarkable
difference between computed configuration from the internal odometry and
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Smooth
time-varying
stabilization

Nonsmooth
time-varying
stabilization

Design with
polar

coordinates

Dynamic
feedback

linearization

Achieved
performance

very slow
erratic

slow
erratic

fast
natural

fast
natural

Ease of
control tuning

a few parameters
problematic

a few parameters
critical simple

simple PD
ξ initialization

Sensitivity to
nonidealities many backups

backups and
sampled feedback good

good
integral action

Generalization
to other WMRs

yes if
chained form

yes if
chained form no

yes if
chained form

Relation with
tracking control

extended
from tracking none none

same PD
control law

Table 7.1. A comparison of the posture stabilization controllers presented in this
chapter

actual displacement of the vehicle on the ground. In our experience, this
behavior was confirmed also in experiments performed with a car-like vehi-
cle (the MARIO robot [25]), where a nonnegligible backlash on the steering
angle of the front wheels led to a substantial error in the final positioning.
Another potential problem with the presented nonsmooth controller is that,
being based on a low-rate sampled state feedback (see eq. (6.4)), the robot
could in principle ‘miss’ the final goal even if passing through it. Among the
positive features of these time-varying control laws, we mention that they
can readily be generalized to more complex WMRs allowing a chained-form
representation (see [28, 32]). Also, the smooth time-varying controller is a
direct outgrowth of the trajectory tracking controller of Sect. 5.3.

The controller based on polar coordinates transformation performed very
well. The resulting vehicle path is very natural (in the sense that is similar
to the one followed by an experienced human driver) and practical conver-
gence is quite fast, with a weak dependence on the choice of the few control
gain parameters. Since at most one backup maneuver is needed, disturbances
due to wheel backlash are minimized. Unfortunately, a direct extension of
such controller is not available for vehicles with more complex kinematics.
The idea of using a state-space transformation that is singular at the goal
configuration, however, stands on its own and has been exploited by other re-
searchers, e.g., in [3]. Also, the polar coordinates controller has been adapted
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in [2] for stabilization about successive via points extracted from a desired
path, but in this way only approximate trajectory tracking can be obtained.

Similar positive comments can be drawn on the performance of the pos-
ture stabilization method designed via dynamic feedback linearization. In
particular, this scheme allows also parallel parking with backward/forward
motion, which is a very natural maneuver. The control tuning requires the
choice from a very large feasible set of PD gains. The relationship with the
analogous controller for trajectory tracking is very simple: it is sufficient to
add the feedforward terms, i.e., the reference output position, velocity and
acceleration (compare eq. (5.18) with eq.(6.12)). As for the use of an addi-
tional dynamics in the control law, it has some pros and cons. On one side,
this design automatically takes into account the nonideality of a first-order
kinematic model of the unicycle, by bringing linear acceleration into the pic-
ture. On the other side, it is necessary to prevent zeroing of the compensator
state and the consequent singularity of the control commands; this may be
achieved in practice by the simple strategy of filtering plus saturating the
velocity commands. The generalization to point-to-point motion tasks for
WMRs with more complex kinematics is under way. It basically consists in
extending the idea of suitably shaping the transient behavior on the linear
side of the problem by appropriate selection of the gain structure (a PDn−2

for n generalized coordinates), so as to achieve a smooth and correct ‘en-
trance’ into the goal for the two outputs representing the robot cartesian
position.

All the controllers reviewed in this chapter use a measure of the state
reconstructed on the basis of the robot odometry. In principle, the actual
motion of SuperMARIO on the ground may be quite different and should be
computed with the aid of exteroceptive sensors. However, in our experiments,
this difference could not be appreciated visually, as shown by the videos on
the web page http://labrob.ing.uniroma1.it/projects/ramsete.html.
The satisfactory performance of our dead reckoning localization system is of
course related to the execution of relatively slow motion tasks.

A final remark is needed about the application of the control methods re-
viewed in this chapter when workspace obstacles are present. In a completely
known environment, it may be convenient to tackle the navigation problem
of a WMR using a three-layer control structure. The highest layer is devoted
to motion planning and takes care of the nominal avoidance of obstacles; the
nonholonomic motion constraints of the WMR may or may not be taken into
account at this stage. The second layer takes charge of motion execution and
uses one of the trajectory tracking controllers given in this chapter. In the
vicinity of the goal, fine posture regulation (docking) can be obtained at the
lowest layer by means of one of the presented stabilizing controllers.
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7.2 Future directions

There are some important issues barely mentioned in this chapter that de-
serve further research.

Inclusion of dynamics. For massive vehicles and/or at high speeds, considera-
tion of robot dynamics is necessary for realistic control design. The dynamics
of general nonholonomic systems is thoroughly analyzed in [5] and, more
specifically for WMRs, in [8]. Interestingly, nonlinear static state feedback
can be used to cancel, in the nominal case, all inertial parameters so as to
lead to a purely (second-order) kinematic model of the form

q̇ = G(q)w, ẇ = a,

in place of eq. (3.2), with (q, w) as the (n + m)-dimensional state and accel-
eration a as the new control input. The control laws used in this chapter do
not directly apply to this case (they may have finite jumps in the velocity),
but it is relatively easy to rework feasible modifications.

Robust control design. Very few papers have explicitly addressed robustness
issues in the control of nonholonomic systems. Robust stabilization of WMRs
in chained form was obtained in [4] and [19] by applying iteratively an open-
loop command; exponential convergence to the desired equilibrium is ob-
tained for small perturbations in the kinematic model. Another possible ap-
proach to the design of effective control laws in the presence of nonidealities
and uncertainties is represented by learning control, as shown in [25]. We
also note that perturbations acting on nonholonomic mobile robots are not
of equal importance: a deviation in a direction compatible with the vehicle
mobility (e.g., slippage of the wheels on the ground) is clearly not as severe
as a deviation which violates the kinematic constraints of the system (e.g.,
lateral sliding).

Use of exteroceptive feedback. Proprioceptive sensors, such as incremental
encoders, are obviously unreliable in the presence of wheel slippage. As a
result, the robot may progressively ‘loose’ itself in the environment. A possi-
ble solution is to close the feedback loop using exteroceptive sensors, which
provide absolute information about the robot localization in its workspace;
sensor fusion techniques are relevant at this stage. The design of sensor-level
controllers for nonholonomic robots is at the beginning stage but growing
fast. An example of an on-board visual servoing for trajectory tracking is
presented in [20].

Extension to WMRs not transformable in chained form. Among the open
problems in motion control of general WMRs, we mention the case of multi-
body vehicles that do not admit a transformation in chained form, such as
a unicycle or car-like tractor with two or more trailers hooked at a non-zero
distance from the axle of the previous moving body. A possible approach to
posture stabilization, using iterative steering of a nilpotent approximation
model, can be found in [33].
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30. Sepulchre R, Janković M, Kokotović P 1997 Constructive Nonlinear Control.

Springer, London
31. Sontag E D 1990 Feedback stabilization of nonlinear systems. In: Kaashoek M

A, van Schuppen J H, Ran A C M (eds) Robust Control of Linear Systems and
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