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Last Time

■ Matrices and vectors

◆ Eigenvalues

◆ Eigenvectors

◆ Determinants

■ Basic descriptive statistics using matrices:
◆ Mean vectors

◆ Covariance Matrices

◆ Correlation Matrices
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Today’s Lecture

■ Putting our new knowledge to use with a useful statistical
distribution: the Multivariate Normal Distribution

■ This roughly maps onto Chapter 4 of Johnson and Wichern
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Multivariate Normal Distribution

■ The generalization of the univariate normal distribution to
multiple variables is called the multivariate normal
distribution (MVN)

■ Many multivariate techniques rely on this distribution in some
manner

■ Although real data may never come from a true MVN, the
MVN provides a robust approximation, and has many nice
mathematical properties

■ Furthermore, because of the central limit theorem, many
multivariate statistics converge to the MVN distribution as the
sample size increases
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Univariate Normal Distribution

■ The univariate normal distribution function is:

f(x) =
1√

2πσ2
e−[(x−µ)/σ]2/2

■ The mean is µ

■ The variance is σ2

■ The standard deviation is σ

■ Standard notation for normal distributions is N(µ, σ2), which
will be extended for the MVN distribution
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Univariate Normal Distribution

N(0, 1)
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Univariate Normal Distribution

N(0, 2)
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Univariate Normal Distribution

N(1.75, 1)
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UVN - Notes

■ The area under the curve for the univariate normal
distribution is a function of the variance/standard deviation

■ In particular:

P (µ − σ ≤ X ≤ µ + σ) = 0.683

P (µ − 2σ ≤ X ≤ µ + 2σ) = 0.954

■ Also note the term in the exponent:

(

(x − µ)

σ

)2

= (x − µ)(σ2)−1(x − µ)

■ This is the square of the distance from x to µ in standard
deviation units, and will be generalized for the MVN
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MVN

■ The multivariate normal distribution function is:

f(x) =
1

(2π)p/2|Σ|1/2
e−(x−µ)′Σ

−1

(x−µ)/2

■ The mean vector is µ

■ The covariance matrix is Σ

■ Standard notation for multivariate normal distributions is
Np(µ,Σ)

■ Visualizing the MVN is difficult for more than two dimensions,
so I will demonstrate some plots with two variables - the
bivariate normal distribution
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Bivariate Normal Plot #1
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Bivariate Normal Plot #1a
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Bivariate Normal Plot #2
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Bivariate Normal Plot #2
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MVN Contours

■ The lines of the contour plots denote places of equal
probability mass for the MVN distribution

◆ The lines represent points of both variables that lead to
the same height on the z-axis (the height of the surface)

■ These contours can be constructed from the eigenvalues
and eigenvectors of the covariance matrix

◆ The direction of the ellipse axes are in the direction of the
eigenvalues

◆ The length of the ellipse axes are proportional to the
constant times the eigenvector

■ Specifically:

(x − µ)′Σ−1(x − µ) = c2

has ellipsoids centered at µ, and has axes ±c
√

λiei
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MVN Contours, Continued

■ Contours are useful because they provide confidence
regions for data points from the MVN distribution

■ The multivariate analog of a confidence interval is given by
an ellipsoid, where c is from the Chi-Squared distribution
with p degrees of freedom

■ Specifically:

(x − µ)′Σ−1(x − µ) = χ2
p(α)

provides the confidence region containing 1 − α of the
probability mass of the MVN distribution
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MVN Contour Example

■ Imagine we had a bivariate normal distribution with:

µ =

[

0

0

]

,Σ =

[

1 0.5

0.5 1

]

■ The covariance matrix has eigenvalues and eigenvectors:

λ =

[

1.5

0.5

]

, E =

[

0.707 −0.707

0.707 0.707

]

■ We want to find a contour where 95% of the probability will
fall, corresponding to χ2

2(0.05) = 5.99
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MVN Contour Example

■ This contour will be centered at µ

■ Axis 1:

µ ±
√

5.99 × 1.5

[

0.707

0.707

]

=

[

2.12

2.12

]

,

[

−2.12

−2.12

]

■ Axis 2:

µ ±
√

5.99 × 0.5

[

−0.707

0.707

]

=

[

−1.22

1.22

]

,

[

1.22

−1.22

]
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MVN Properties

■ The MVN distribution has some convenient properties

■ If X has a multivariate normal distribution, then:

1. Linear combinations of X are normally distributed

2. All subsets of the components of X have a MVN
distribution

3. Zero covariance implies that the corresponding
components are independently distributed

4. The conditional distributions of the components are MVN
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Linear Combinations

■ If X ∼ Np (µ,Σ), then any set of q linear combinations of
variables A(q×p) are also normally distributed as
AX ∼ Nq (Aµ, AΣA′)

■ For example, let p = 3 and Y be the difference between X1

and X2. The combination matrix would be

A =
[

)1 −1 0
]

For X

µ =







µ1

µ2

µ3






,Σ =







σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33







For Y = AX

µY =
[

µ1 − µ2

]

,ΣY =
[

σ11 + σ22 − 2σ12

]
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MVN Properties

■ The MVN distribution is characterized by two parameters:

◆ The mean vector µ

◆ The covariance matrix Σ

■ The maximum likelihood estimates for these parameters are
given by:

◆ The mean vector: x̄′ =
1

n

n
∑

i=1

xi =
1

n
X’1

◆ The covariance matrix

S =
1

n

n
∑

i=1

(xi − x̄)2 =
1

n
(X − 1x̄′)′(X − 1x̄′)
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Distribution of x̄ and S

Recall back in Univariate statistics you discussed the Central
Limit Theorem (CLT)

It stated that, if the set of n observations x1, x2, . . . , xn were
normal or not...

■ The distribution of x̄ would be normal with mean equal to µ
and variance σ2/n

■ We were also told that (n − 1)s2/σ2 had a Chi-Square
distribution with n − 1 degrees of freedom

■ Note: We ended up using these pieces of information for
hypothesis testing such as t-test and ANOVA.
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Distribution of x̄ and S

We also have a Multivariate Central Limit Theorem (CLT)

It states that, if the set of n observations x1, x2, . . . , xn are
multivariate normal or not...

■ The distribution of x̄ would be normal with mean equal to µ

and variance/covariance matrix Σ/n

■ We are also told that (n − 1)S will have a Wishart
distribution, Wp(n − 1,Σ), with n − 1 degrees of freedom

◆ This is the multivariate analogue to a Chi-Square
distribution

■ Note: We will end up using some of this information for
multivariate hypothesis testing
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Distribution of x̄ and S

■ Therefore, let x1, x2, . . . , xn be independent observations
from a population with mean µ and covariance Σ

■ The following are true:

◆
√

n
(

X̄ − µ
)

is approximately Np(0,Σ)

◆ n (X − µ)′ S−1 (X − µ) is approximately χ2
p
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Sufficient Statistics

■ The sample estimates X̄ and S) are sufficient statistics

■ This means that all of the information contained in the data
can be summarized by these two statistics alone

■ This is only true if the data follow a multivariate normal
distribution - if they do not, other terms are needed (i.e.,
skewness array, kurtosis array, etc...)

■ Some statistical methods only use one or both of these
matrices in their analysis procedures and not the actual data
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Density and Likelihood Functions

■ The MVN distribution is often the core statistical distribution
for a uni- or multivariate statistical technique

■ Maximum likelihood estimates are preferable in statistics due
to a set of desirable asymptotic properties, including:

◆ Consistency: the estimator converges in probability to
the value being estimated

◆ Asymptotic Normality: the estimator has a normal
distribution with a functionally known variance

◆ Efficiency: no asymptotically unbiased estimator has
lower asymptotic mean squared error than the MLE

■ The form of the MVN ML function frequently appears in
statistics, so we will briefly discuss MLE using normal
distributions
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An Introduction to Maximum Likelihood

■ Maximum likelihood estimation seeks to find parameters of a
statistical model (mapping onto the mean vector and/or
covariance matrix) such that the statistical likelihood function
is maximized

■ The method assumes data follow a statistical distribution, in
our case the MVN

■ More frequently, the log-likelihood function is used instead of
the likelihood function

◆ The “logged” and “un-logged” version of the function have
a maximum at the same point

◆ The “logged” version is easier mathematically
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Maximum Likelihood for Univariate Normal

■ We will start with the univariate normal case and then
generalize

■ Imagine we have a sample of data, X , which we will assume
is normally distributed with an unknown mean but a known
variance (say the variance is 1)

■ We will build the maximum likelihood function for the mean

■ Our function rests on two assumptions:

1. All data follow a normal distribution

2. All observations are independent

■ Put into statistical terms: X is independent and identically
distributed (iid) as N1 (µ, 1)
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Building the Likelihood Function

■ Each observation, then, follows a normal distribution with the
same mean (unknown) and variance (1)

■ The distribution function begins with the density – the
function that provides the normal curve (with (1) in place of
σ2):

f(Xi|µ) =
1

√

2π(1)
exp

(

− (Xi − µ)2

2(1)2

)

■ The density provides the “likelihood” of observing an
observation Xi for a given value of µ (and a known value of
σ2 = 1

■ The “likelihood” is the height of the normal curve
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The One-Observation Likelihood Function

The graph shows f(Xi|µ = 1) for a range of X

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

X

f(
X

|m
u)

The vertical lines indicate:

■ f(Xi = 0|µ = 1) = .241

■ f(Xi = 1|µ = 1) = .399
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The Overall Likelihood Function

■ Because we have a sample of N observations, our likelihood
function is taken across all observations, not just one

■ The “joint” likelihood function uses the assumption that
observations are independent to be expressed as a product
of likelihood functions across all observations:

L(x|µ) = f(X1|µ) × f(X2|µ) × . . . × f(XN |µ)

L(x|µ) =

N
∏

i=1

f(Xi|µ) =

(

1

2π(1)

)N/2

exp

(

−
∑N

i=1(Xi − µ)2

2(1)2

)

■ The value of µ that maximizes f(x|µ) is the MLE (in this
case, it’s the sample mean)

■ In more complicated models, the MLE does not have a
closed form and therefore must be found using numeric
methods
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The Overall Log-Likelihood Function

■ For an unknown mean µ and variance σ2, the likelihood
function is:

L(x|µ, σ2) =

(

1

2πσ2

)N/2

exp

(

−
∑N

i=1(Xi − µ)2

2σ2

)

■ More commonly, the log-likelihood function is used:

L(x|µ, σ2) = −
(

N

2

)

log
(

2πσ2
)

−
(

∑N
i=1(Xi − µ)2

2σ2

)
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The Multivariate Normal Likelihood Function

■ For a set of N independent observations on p variables,
X(N×p), the multivariate normal likelihood function is formed
by using a similar approach

■ For an unknown mean vector µ and covariance Σ, the joint
likelihood is:

L(X|µ,Σ) =
N
∏

i=1

1

(2π)p/2|Σ|1/2
exp

(

− (xi − µ)
′

Σ
−1 (xi − µ) /2

)

=
1

(2π)np/2

1

|Σ|n/2
exp

(

−
N
∑

i=1

(xi − µ)′ Σ−1 (xi − µ) /2

)
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The Multivariate Normal Likelihood Function

■ Occasionally, a more intricate form of the MVN likelihood
function shows up

■ Although mathematically identical to the function on the last
page, this version typically appears without explanation:

L(X|µ,Σ) = (2π)
−np/2 |Σ|−n/2

exp

(

−tr

[

Σ
−1

(

N
∑

i=1

(xi − x̄) (xi − x̄)′ + n (x̄ − µ) (x̄ − µ)′
)]

/2

)
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The MVN Log-Likelihood Function

■ As with the univariate case, the MVN likelihood function is
typically converted into a log-likelihood function for simplicity

■ The MVN log-likelihood function is given by:

l(X|µ,Σ) = −np

2
log (2π) − n

2
log (|Σ|)−

1

2

(

N
∑

i=1

(xi − µ)
′

Σ
−1 (xi − µ)

)
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But...Why?

■ The MVN distribution, likelihood, and log-likelihood functions
show up frequently in statistical methods

■ Commonly used methods rely on versions of the distribution,
methods such as:

◆ Linear models (ANOVA, Regression)
◆ Mixed models (i.e., hierarchical linear models, random

effects models, multilevel models)
◆ Path models/simultaneous equation models
◆ Structural equation models (and confirmatory factor

models)
◆ Many versions of finite mixture models

■ Understanding the form of the MVN distribution will help to
understand the commonalities between each of these
models
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MVN in Mixed Models

■ From SAS’ manual for proc mixed :
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MVN in Structural Equation Models

■ From SAS’ manual for proc calis:

■ This package uses only the covariance matrix, so the form of
the likelihood function is phrased using only the Wishart
Distribution:

w (S|Σ) =

|S|(n−p−2) exp
[

−tr
[

SΣ
−1
]

/2
]

2p(n−1)/2πp(p−1)/4‖Σ|(n−1)/2
∏p

i=1 Γ
(

1
2 (n − i)

)
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Assessing Normality

■ Recall from earlier that IF the data have a Multivariate
normal distribution then all of the previously discussed
properties will hold

■ There are a host of methods that have been developed to
assess multivariate normality - just look in Johnson &
Wichern

■ Given the relative robustness of the MVN distribution, I will
skip this topic, acknowledging that extreme deviations from
normality will result in poorly performing statistics

■ More often than not, assessing MV normality is fraught with
difficulty due to sample-estimated parameters of the
distribution
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Transformations to Near Normality

■ Historically, people have gone on an expedition to find a
transformation to near-normality when learning their data
may not be MVN

■ Modern statistical methods, however, make that a very bad
idea

■ More often than not, transformations end up changing the
nature of the statistics you are interested in forming

■ Furthermore, not all data need to be MVN (think conditional
distributions)
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Final Thoughts

■ The multivariate normal distribution is an analog to the
univariate normal distribution

■ The MVN distribution will play a large role in the upcoming
weeks

■ We can finally put the background material to rest, and begin
learning some statistics methods

■ Tomorrow: lab with SAS - the “fun” of proc iml

■ Up next week: Inferences about Mean Vectors and
Multivariate ANOVA
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