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Introduction to Autonomous Mobile Robots

Roland Siegwart and Illah R. Nourbakhsh

Mobile robots range from the teleoperated Sojourner on the Mars Pathfinder

mission to cleaning robots in the Paris Metro. Introduction to Autonomous

Mobile Robots offers students and other interested readers an overview of the

technology of mobility—the mechanisms that allow a mobile robot to move

through a real world environment to perform its tasks—including locomotion,

sensing, localization, and motion planning. It discusses all facets of mobile robotics,

including hardware design, wheel design, kinematics analysis, sensors and per-

ception, localization, mapping, and robot control architectures.

The design of any successful robot involves the integration of many different

disciplines, among them kinematics, signal analysis, information theory, artificial

intelligence, and probability theory. Reflecting this, the book presents the tech-

niques and technology that enable mobility in a series of interacting modules.

Each chapter covers a different aspect of mobility, as the book moves from low-

level to high-level details. The first two chapters explore low-level locomotory

ability, examining robots’ wheels and legs and the principles of kinematics. This is

followed by an in-depth view of perception, including descriptions of many “off-

the-shelf” sensors and an analysis of the interpretation of sensed data. The final

two chapters consider the higher-level challenges of localization and cognition,

discussing successful localization strategies, autonomous mapping, and navigation

competence. Bringing together all aspects of mobile robotics into one volume,

Introduction to Autonomous Mobile Robots can serve as a textbook for course-

work or a working tool for beginners in the field.

Roland Siegwart is Professor and Head of the Autonomous Systems Lab at the

Swiss Federal Institute of Technology, Lausanne. Illah R. Nourbakhsh is Associate

Professor of Robotics in the Robotics Institute, School of Computer Science, at

Carnegie Mellon University.

“This book is easy to read and well organized. The idea of providing a robot

functional architecture as an outline of the book, and then explaining each 

component in a chapter, is excellent. I think the authors have achieved their

goals, and that both the beginner and the advanced student will have a clear

idea of how a robot can be endowed with mobility.”

—Raja Chatila, LAAS-CNRS, France

Intelligent Robotics and Autonomous Agents series
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3 Mobile Robot Kinematics

3.1 Introduction

Kinematics is the most basic study of how mechanical systems behave. In mobile robotics,
we need to understand the mechanical behavior of the robot both in order to design appro-
priate mobile robots for tasks and to understand how to create control software for an
instance of mobile robot hardware.

Of course, mobile robots are not the first complex mechanical systems to require such
analysis. Robot manipulators have been the subject of intensive study for more than thirty
years. In some ways, manipulator robots are much more complex than early mobile robots:
a standard welding robot may have five or more joints, whereas early mobile robots were
simple differential-drive machines. In recent years, the robotics community has achieved a
fairly complete understanding of the kinematics and even the dynamics (i.e., relating to
force and mass) of robot manipulators [11, 32].

The mobile robotics community poses many of the same kinematic questions as the
robot manipulator community. A manipulator robot’s workspace is crucial because it
defines the range of possible positions that can be achieved by its end effector relative to
its fixture to the environment. A mobile robot’s workspace is equally important because it
defines the range of possible poses that the mobile robot can achieve in its environment.
The robot arm’s controllability defines the manner in which active engagement of motors
can be used to move from pose to pose in the workspace. Similarly, a mobile robot’s con-
trollability defines possible paths and trajectories in its workspace. Robot dynamics places
additional constraints on workspace and trajectory due to mass and force considerations.
The mobile robot is also limited by dynamics; for instance, a high center of gravity limits
the practical turning radius of a fast, car-like robot because of the danger of rolling.

But the chief difference between a mobile robot and a manipulator arm also introduces
a significant challenge for position estimation. A manipulator has one end fixed to the envi-
ronment. Measuring the position of an arm’s end effector is simply a matter of understand-
ing the kinematics of the robot and measuring the position of all intermediate joints. The
manipulator’s position is thus always computable by looking at current sensor data. But a
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mobile robot is a self-contained automaton that can wholly move with respect to its envi-
ronment. There is no direct way to measure a mobile robot’s position instantaneously.
Instead, one must integrate the motion of the robot over time. Add to this the inaccuracies
of motion estimation due to slippage and it is clear that measuring a mobile robot’s position
precisely is an extremely challenging task.

The process of understanding the motions of a robot begins with the process of describ-
ing the contribution each wheel provides for motion. Each wheel has a role in enabling the
whole robot to move. By the same token, each wheel also imposes constraints on the
robot’s motion; for example, refusing to skid laterally. In the following section, we intro-
duce notation that allows expression of robot motion in a global reference frame as well as
the robot’s local reference frame. Then, using this notation, we demonstrate the construc-
tion of simple forward kinematic models of motion, describing how the robot as a whole
moves as a function of its geometry and individual wheel behavior. Next, we formally
describe the kinematic constraints of individual wheels, and then combine these kinematic
constraints to express the whole robot’s kinematic constraints. With these tools, one can
evaluate the paths and trajectories that define the robot’s maneuverability. 

3.2 Kinematic Models and Constraints

Deriving a model for the whole robot’s motion is a bottom-up process. Each individual
wheel contributes to the robot’s motion and, at the same time, imposes constraints on robot
motion. Wheels are tied together based on robot chassis geometry, and therefore their con-
straints combine to form constraints on the overall motion of the robot chassis. But the
forces and constraints of each wheel must be expressed with respect to a clear and consis-
tent reference frame. This is particularly important in mobile robotics because of its self-
contained and mobile nature; a clear mapping between global and local frames of reference
is required. We begin by defining these reference frames formally, then using the resulting
formalism to annotate the kinematics of individual wheels and whole robots. Throughout
this process we draw extensively on the notation and terminology presented in [52].

3.2.1   Representing robot position
Throughout this analysis we model the robot as a rigid body on wheels, operating on a hor-
izontal plane. The total dimensionality of this robot chassis on the plane is three, two for
position in the plane and one for orientation along the vertical axis, which is orthogonal to
the plane. Of course, there are additional degrees of freedom and flexibility due to the
wheel axles, wheel steering joints, and wheel castor joints. However by robot chassis we
refer only to the rigid body of the robot, ignoring the joints and degrees of freedom internal
to the robot and its wheels. 
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In order to specify the position of the robot on the plane we establish a relationship
between the global reference frame of the plane and the local reference frame of the robot,
as in figure 3.1. The axes  and  define an arbitrary inertial basis on the plane as the
global reference frame from some origin O: . To specify the position of the robot,
choose a point P on the robot chassis as its position reference point. The basis 
defines two axes relative to P on the robot chassis and is thus the robot’s local reference
frame. The position of P in the global reference frame is specified by coordinates x and y,
and the angular difference between the global and local reference frames is given by . We
can describe the pose of the robot as a vector with these three elements. Note the use of the
subscript I to clarify the basis of this pose as the global reference frame:

 (3.1)

To describe robot motion in terms of component motions, it will be necessary to map
motion along the axes of the global reference frame to motion along the axes of the robot’s
local reference frame. Of course, the mapping is a function of the current pose of the robot.
This mapping is accomplished using the orthogonal rotation matrix:

Figure 3.1
The global reference frame and the robot local reference frame.
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 (3.2)

This matrix can be used to map motion in the global reference frame  to motion
in terms of the local reference frame . This operation is denoted by 
because the computation of this operation depends on the value of :

 (3.3)

For example, consider the robot in figure 3.2. For this robot, because  we can
easily compute the instantaneous rotation matrix R:

 (3.4)

R θ( )
θcos θsin 0
θsin– θcos 0

0 0 1
=

XI YI,{ }
XR YR,{ } R θ( )ξ· I

θ

ξR
· R π

2
---( )ξI

·=

Figure 3.2
The mobile robot aligned with a global axis.
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 Given some velocity ( ) in the global reference frame we can compute the
components of motion along this robot’s local axes  and . In this case, due to the spe-
cific angle of the robot, motion along  is equal to  and motion along  is :

 (3.5)

3.2.2   Forward kinematic models
In the simplest cases, the mapping described by equation (3.3) is sufficient to generate a
formula that captures the forward kinematics of the mobile robot: how does the robot move,
given its geometry and the speeds of its wheels? More formally, consider the example
shown in figure 3.3. 

This differential drive robot has two wheels, each with diameter . Given a point  cen-
tered between the two drive wheels, each wheel is a distance  from . Given , , , and
the spinning speed of each wheel,  and , a forward kinematic model would predict
the robot’s overall speed in the global reference frame: 

 (3.6)

From equation (3.3) we know that we can compute the robot’s motion in the global ref-
erence frame from motion in its local reference frame: . Therefore, the strat-
egy will be to first compute the contribution of each of the two wheels in the local reference

x· y· θ·, ,
XR YR

XR y· YR x·–

ξR
· R π

2
---( )ξI

·
0 1 0
1– 0 0

0 0 1

x·

y·

θ·

y·

x·–

θ·
= = =

Figure 3.3
A differential-drive robot in its global reference frame.
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frame, . For this example of a differential-drive chassis, this problem is particularly
straightforward.

Suppose that the robot’s local reference frame is aligned such that the robot moves for-
ward along , as shown in figure 3.1. First consider the contribution of each wheel’s
spinning speed to the translation speed at P in the direction of . If one wheel spins
while the other wheel contributes nothing and is stationary, since P is halfway between the
two wheels, it will move instantaneously with half the speed:  and

. In a differential drive robot, these two contributions can simply be added
to calculate the  component of . Consider, for example, a differential robot in which
each wheel spins with equal speed but in opposite directions. The result is a stationary,
spinning robot. As expected,  will be zero in this case. The value of  is even simpler
to calculate. Neither wheel can contribute to sideways motion in the robot’s reference
frame, and so  is always zero. Finally, we must compute the rotational component  of

. Once again, the contributions of each wheel can be computed independently and just
added. Consider the right wheel (we will call this wheel 1). Forward spin of this wheel
results in counterclockwise rotation at point . Recall that if wheel 1 spins alone, the robot
pivots around wheel 2. The rotation velocity  at  can be computed because the wheel
is instantaneously moving along the arc of a circle of radius : 

 (3.7)

The same calculation applies to the left wheel, with the exception that forward spin
results in clockwise rotation at point :

 (3.8)

Combining these individual formulas yields a kinematic model for the differential-drive
example robot:

 (3.9)

ξ· R

+XR

+XR

xr1
· 1 2⁄( )rϕ· 1=

xr2
· 1 2⁄( )rϕ· 2=

xR
· ξ· R

xR
· yR

·

yR
· θR

·

ξ· R

P
ω1 P

2l

ω1

rϕ· 1

2l
--------=

P

ω2

r– ϕ· 2

2l
-----------=

ξI
· R θ( ) 1–

rϕ· 1

2
--------

rϕ· 2

2
--------+

0
rϕ· 1

2l
--------

r– ϕ· 2

2l
-----------+

=
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We can now use this kinematic model in an example. However, we must first compute
. In general, calculating the inverse of a matrix may be challenging. In this case,

however, it is easy because it is simply a transform from  to  rather than vice versa:

 (3.10)

Suppose that the robot is positioned such that , , and . If the robot
engages its wheels unevenly, with speeds  and , we can compute its veloc-
ity in the global reference frame:

 (3.11)

So this robot will move instantaneously along the y-axis of the global reference frame
with speed 3 while rotating with speed 1. This approach to kinematic modeling can provide
information about the motion of a robot given its component wheel speeds in straightfor-
ward cases. However, we wish to determine the space of possible motions for each robot
chassis design. To do this, we must go further, describing formally the constraints on robot
motion imposed by each wheel. Section 3.2.3 begins this process by describing constraints
for various wheel types; the rest of this chapter provides tools for analyzing the character-
istics and workspace of a robot given these constraints.

3.2.3   Wheel kinematic constraints
The first step to a kinematic model of the robot is to express constraints on the motions of
individual wheels. Just as shown in section 3.2.2, the motions of individual wheels can later
be combined to compute the motion of the robot as a whole. As discussed in chapter 2, there
are four basic wheel types with widely varying kinematic properties. Therefore, we begin
by presenting sets of constraints specific to each wheel type.

However, several important assumptions will simplify this presentation. We assume that
the plane of the wheel always remains vertical and that there is in all cases one single point
of contact between the wheel and the ground plane. Furthermore, we assume that there is
no sliding at this single point of contact. That is, the wheel undergoes motion only under
conditions of pure rolling and rotation about the vertical axis through the contact point. For
a more thorough treatment of kinematics, including sliding contact, refer to [25].

R θ( ) 1–

ξ· R ξ· I

R θ( ) 1–
θcos θsin– 0
θsin θcos 0

0 0 1
=

θ π 2⁄= r 1= l 1=
ϕ· 1 4= ϕ· 2 2=

ξI
·

x·

y·

θ·

0 1– 0
1 0 0
0 0 1

3
0
1

0
3
1

== =



54 Chapter 3

Under these assumptions, we present two constraints for every wheel type. The first con-
straint enforces the concept of rolling contact – that the wheel must roll when motion takes
place in the appropriate direction. The second constraint enforces the concept of no lateral
slippage – that the wheel must not slide orthogonal to the wheel plane.

3.2.3.1   Fixed standard wheel
The fixed standard wheel has no vertical axis of rotation for steering. Its angle to the chassis
is thus fixed, and it is limited to motion back and forth along the wheel plane and rotation
around its contact point with the ground plane. Figure 3.4 depicts a fixed standard wheel 
and indicates its position pose relative to the robot’s local reference frame . The
position of  is expressed in polar coordinates by distance  and angle . The angle of the
wheel plane relative to the chassis is denoted by , which is fixed since the fixed standard
wheel is not steerable. The wheel, which has radius , can spin over time, and so its rota-
tional position around its horizontal axle is a function of time : .

The rolling constraint for this wheel enforces that all motion along the direction of the
wheel plane must be accompanied by the appropriate amount of wheel spin so that there is
pure rolling at the contact point:

 (3.12)

Figure 3.4
A fixed standard wheel and its parameters.
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The first term of the sum denotes the total motion along the wheel plane. The three ele-
ments of the vector on the left represent mappings from each of  to their contri-
butions for motion along the wheel plane. Note that the  term is used to transform
the motion parameters  that are in the global reference frame  into motion
parameters in the local reference frame  as shown in example equation (3.5). This
is necessary because all other parameters in the equation, , are in terms of the robot’s
local reference frame. This motion along the wheel plane must be equal, according to this
constraint, to the motion accomplished by spinning the wheel, . 

The sliding constraint for this wheel enforces that the component of the wheel’s motion
orthogonal to the wheel plane must be zero:

 (3.13)

For example, suppose that wheel  is in a position such that . This
would place the contact point of the wheel on  with the plane of the wheel oriented par-
allel to . If , then the sliding constraint [equation (3.13)] reduces to

 (3.14)

This constrains the component of motion along  to be zero and since  and  are
parallel in this example, the wheel is constrained from sliding sideways, as expected.

3.2.3.2   Steered standard wheel
The steered standard wheel differs from the fixed standard wheel only in that there is an
additional degree of freedom: the wheel may rotate around a vertical axis passing through
the center of the wheel and the ground contact point. The equations of position for the
steered standard wheel (figure 3.5) are identical to that of the fixed standard wheel shown
in figure 3.4 with one exception. The orientation of the wheel to the robot chassis is no
longer a single fixed value, , but instead varies as a function of time: . The rolling
and sliding constraints are

 (3.15)

 (3.16)

x· y· θ·, ,
R θ( )ξI

·

ξI
· XI YI,{ }

XR YR,{ }
α β l, ,

rϕ·

α β+( )cos α β+( )sin l βsin R θ( )ξI
· 0=

A α 0=( ) β 0=( ),{ }
XI

YI θ 0=

1 0 0
1 0 0
0 1 0
0 0 1

x·

y·

θ·
1 0 0

x·

y·

θ·
0= =

XI XI XR

β β t( )

α β+( )sin α β+( )cos– l–( ) βcos R θ( )ξI
· rϕ·– 0=

α β+( )cos α β+( )sin l βsin R θ( )ξ· I 0=
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These constraints are identical to those of the fixed standard wheel because, unlike ,
 does not have a direct impact on the instantaneous motion constraints of a robot. It is

only by integrating over time that changes in steering angle can affect the mobility of a
vehicle. This may seem subtle, but is a very important distinction between change in steer-
ing position, , and change in wheel spin, .

3.2.3.3   Castor wheel
Castor wheels are able to steer around a vertical axis. However, unlike the steered standard
wheel, the vertical axis of rotation in a castor wheel does not pass through the ground con-
tact point. Figure 3.6 depicts a castor wheel, demonstrating that formal specification of the
castor wheel’s position requires an additional parameter. 

The wheel contact point is now at position , which is connected by a rigid rod  of
fixed length to point  fixes the location of the vertical axis about which  steers, and
this point  has a position specified in the robot’s reference frame, as in figure 3.6. We
assume that the plane of the wheel is aligned with  at all times. Similar to the steered
standard wheel, the castor wheel has two parameters that vary as a function of time. 
represents the wheel spin over time as before.  denotes the steering angle and orienta-
tion of  over time.

For the castor wheel, the rolling constraint is identical to equation (3.15) because the
offset axis plays no role during motion that is aligned with the wheel plane:

Figure 3.5
A steered standard wheel and its parameters.
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 (3.17)

The castor geometry does, however, have significant impact on the sliding constraint.
The critical issue is that the lateral force on the wheel occurs at point because this is the
attachment point of the wheel to the chassis. Because of the offset ground contact point rel-
ative to , the constraint that there be zero lateral movement would be wrong. Instead, the
constraint is much like a rolling constraint, in that appropriate rotation of the vertical axis
must take place:

 (3.18)

In equation (3.18), any motion orthogonal to the wheel plane must be balanced by an
equivalent and opposite amount of castor steering motion. This result is critical to the suc-
cess of castor wheels because by setting the value of  any arbitrary lateral motion can be
acceptable. In a steered standard wheel, the steering action does not by itself cause a move-
ment of the robot chassis. But in a castor wheel the steering action itself moves the robot
chassis because of the offset between the ground contact point and the vertical axis of rota-
tion.

Figure 3.6
A castor wheel and its parameters.
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More concisely, it can be surmised from equations (3.17) and (3.18) that, given any
robot chassis motion , there exists some value for spin speed  and steering speed 
such that the constraints are met. Therefore, a robot with only castor wheels can move with
any velocity in the space of possible robot motions. We term such systems omnidirectional.

A real-world example of such a system is the five-castor wheel office chair shown in
figure 3.7. Assuming that all joints are able to move freely, you may select any motion
vector on the plane for the chair and push it by hand. Its castor wheels will spin and steer
as needed to achieve that motion without contact point sliding. By the same token, if each
of the chair’s castor wheels housed two motors, one for spinning and one for steering, then
a control system would be able to move the chair along any trajectory in the plane. Thus,
although the kinematics of castor wheels is somewhat complex, such wheels do not impose
any real constraints on the kinematics of a robot chassis.

3.2.3.4   Swedish wheel
Swedish wheels have no vertical axis of rotation, yet are able to move omnidirectionally
like the castor wheel. This is possible by adding a degree of freedom to the fixed standard
wheel. Swedish wheels consist of a fixed standard wheel with rollers attached to the wheel
perimeter with axes that are antiparallel to the main axis of the fixed wheel component. The
exact angle  between the roller axes and the main axis can vary, as shown in figure 3.8. 

For example, given a Swedish 45-degree wheel, the motion vectors of the principal axis
and the roller axes can be drawn as in figure 3.8. Since each axis can spin clockwise or
counterclockwise, one can combine any vector along one axis with any vector along the
other axis. These two axes are not necessarily independent (except in the case of the Swed-
ish 90-degree wheel); however, it is visually clear that any desired direction of motion is
achievable by choosing the appropriate two vectors.

ξ· I ϕ· β·

Figure 3.7
Office chair with five castor wheels.

γ
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The pose of a Swedish wheel is expressed exactly as in a fixed standard wheel, with the
addition of a term, , representing the angle between the main wheel plane and the axis of
rotation of the small circumferential rollers. This is depicted in figure 3.8 within the robot’s
reference frame.

Formulating the constraint for a Swedish wheel requires some subtlety. The instanta-
neous constraint is due to the specific orientation of the small rollers. The axis around
which these rollers spin is a zero component of velocity at the contact point. That is, moving
in that direction without spinning the main axis is not possible without sliding. The motion
constraint that is derived looks identical to the rolling constraint for the fixed standard
wheel in equation (3.12) except that the formula is modified by adding  such that the
effective direction along which the rolling constraint holds is along this zero component
rather than along the wheel plane:

 (3.19)

Orthogonal to this direction the motion is not constrained because of the free rotation
of the small rollers.

 (3.20)

Figure 3.8
A Swedish wheel and its parameters.
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The behavior of this constraint and thereby the Swedish wheel changes dramatically as
the value  varies. Consider . This represents the swedish 90-degree wheel. In this
case, the zero component of velocity is in line with the wheel plane and so equation (3.19)
reduces exactly to equation (3.12), the fixed standard wheel rolling constraint. But because
of the rollers, there is no sliding constraint orthogonal to the wheel plane [see equation
(3.20)]. By varying the value of , any desired motion vector can be made to satisfy equa-
tion (3.19) and therefore the wheel is omnidirectional. In fact, this special case of the Swed-
ish design results in fully decoupled motion, in that the rollers and the main wheel provide
orthogonal directions of motion. 

At the other extreme, consider . In this case, the rollers have axes of rotation
that are parallel to the main wheel axis of rotation. Interestingly, if this value is substituted
for  in equation (3.19) the result is the fixed standard wheel sliding constraint, equation
(3.13). In other words, the rollers provide no benefit in terms of lateral freedom of motion
since they are simply aligned with the main wheel. However, in this case the main wheel
never needs to spin and therefore the rolling constraint disappears. This is a degenerate
form of the Swedish wheel and therefore we assume in the remainder of this chapter that

.

3.2.3.5   Spherical wheel
The final wheel type, a ball or spherical wheel, places no direct constraints on motion (fig-
ure 3.9). Such a mechanism has no principal axis of rotation, and therefore no appropriate
rolling or sliding constraints exist. As with castor wheels and Swedish wheels, the spherical
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Figure 3.9
A spherical wheel and its parameters.
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wheel is clearly omnidirectional and places no constraints on the robot chassis kinematics.
Therefore equation (3.21) simply describes the roll rate of the ball in the direction of motion

 of point  of the robot.

 (3.21)

By definition the wheel rotation orthogonal to this direction is zero. 

 (3.22)

As can be seen, the equations for the spherical wheel are exactly the same as for the fixed
standard wheel. However, the interpretation of equation (3.22) is different. The omnidirec-
tional spherical wheel can have any arbitrary direction of movement, where the motion
direction given by  is a free variable deduced from equation (3.22). Consider the case that
the robot is in pure translation in the direction of . Then equation (3.22) reduces to

, thus , which makes sense for this special case.

3.2.4   Robot kinematic constraints
Given a mobile robot with  wheels we can now compute the kinematic constraints of the
robot chassis. The key idea is that each wheel imposes zero or more constraints on robot
motion, and so the process is simply one of appropriately combining all of the kinematic
constraints arising from all of the wheels based on the placement of those wheels on the
robot chassis.

We have categorized all wheels into five categories: (1) fixed and (2)steerable standard
wheels, (3) castor wheels, (4) Swedish wheels, and (5) spherical wheels. But note from the
wheel kinematic constraints in equations (3.17), (3.18), and (3.19) that the castor wheel,
Swedish wheel, and spherical wheel impose no kinematic constraints on the robot chassis,
since  can range freely in all of these cases owing to the internal wheel degrees of free-
dom.

Therefore only fixed standard wheels and steerable standard wheels have impact on
robot chassis kinematics and therefore require consideration when computing the robot’s
kinematic constraints. Suppose that the robot has a total of  standard wheels, comprising

 fixed standard wheels and  steerable standard wheels. We use  to denote the
variable steering angles of the  steerable standard wheels. In contrast,  refers to the
orientation of the  fixed standard wheels as depicted in figure 3.4. In the case of wheel
spin, both the fixed and steerable wheels have rotational positions around the horizontal
axle that vary as a function of time. We denote the fixed and steerable cases separately as

 and , and use  as an aggregate matrix that combines both values:
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 (3.23)

The rolling constraints of all wheels can now be collected in a single expression:

 (3.24)

This expression bears a strong resemblance to the rolling constraint of a single wheel,
but substitutes matrices in lieu of single values, thus taking into account all wheels.  is a
constant diagonal  matrix whose entries are radii  of all standard wheels. 
denotes a matrix with projections for all wheels to their motions along their individual
wheel planes:

 (3.25)

Note that  is only a function of  and not . This is because the orientations of
steerable standard wheels vary as a function of time, whereas the orientations of fixed stan-
dard wheels are constant.  is therefore a constant matrix of projections for all fixed stan-
dard wheels. It has size ( ), with each row consisting of the three terms in the three-
matrix from equation (3.12) for each fixed standard wheel.  is a matrix of size
( ), with each row consisting of the three terms in the three-matrix from equation
(3.15) for each steerable standard wheel. 

In summary, equation (3.24) represents the constraint that all standard wheels must spin
around their horizontal axis an appropriate amount based on their motions along the wheel
plane so that rolling occurs at the ground contact point.

We use the same technique to collect the sliding constraints of all standard wheels into
a single expression with the same structure as equations (3.13) and (3.16):

 (3.26)

 (3.27)

 and  are ( ) and ( ) matrices whose rows are the three terms in the
three-matrix of equations (3.13) and (3.16) for all fixed and steerable standard wheels. Thus
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equation (3.26) is a constraint over all standard wheels that their components of motion
orthogonal to their wheel planes must be zero. This sliding constraint over all standard
wheels has the most significant impact on defining the overall maneuverability of the robot
chassis, as explained in the next section.

3.2.5   Examples: robot kinematic models and constraints
In section 3.2.2 we presented a forward kinematic solution for  in the case of a simple
differential-drive robot by combining each wheel’s contribution to robot motion. We can
now use the tools presented above to construct the same kinematic expression by direct
application of the rolling constraints for every wheel type. We proceed with this technique
applied again to the differential drive robot, enabling verification of the method as com-
pared to the results of section 3.2.2. Then we proceed to the case of the three-wheeled omni-
directional robot. 

3.2.5.1   A differential-drive robot example
First, refer to equations (3.24) and (3.26). These equations relate robot motion to the rolling
and sliding constraints  and , and the wheel spin speed of the robot’s wheels,

. Fusing these two equations yields the following expression:

 (3.28)

Once again, consider the differential drive robot in figure 3.3. We will construct 
and  directly from the rolling constraints of each wheel. The castor is unpowered and
is free to move in any direction, so we ignore this third point of contact altogether. The two
remaining drive wheels are not steerable, and therefore  and  simplify to 
and  respectively. To employ the fixed standard wheel’s rolling constraint formula,
equation (3.12), we must first identify each wheel’s values for  and . Suppose that the
robot’s local reference frame is aligned such that the robot moves forward along , as
shown in figure 3.1. In this case, for the right wheel , , and for the left
wheel, , . Note the value of  for the right wheel is necessary to ensure
that positive spin causes motion in the  direction (figure 3.4). Now we can compute
the  and  matrix using the matrix terms from equations (3.12) and (3.13). Because
the two fixed standard wheels are parallel, equation (3.13) results in only one independent
equation, and equation (3.28) gives
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 (3.29)

Inverting equation (3.29) yields the kinematic equation specific to our differential drive
robot:

 (3.30)

This demonstrates that, for the simple differential-drive case, the combination of wheel
rolling and sliding constraints describes the kinematic behavior, based on our manual cal-
culation in section 3.2.2. 

3.2.5.2   An omnidirectional robot example
Consider the omniwheel robot shown in figure 3.10. This robot has three Swedish 90-
degree wheels, arranged radially symmetrically, with the rollers perpendicular to each main
wheel.

First we must impose a specific local reference frame upon the robot. We do so by
choosing point  at the center of the robot, then aligning the robot with the local reference
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Figure 3.10
A three-wheel omnidrive robot developed by Carnegie Mellon University (www.cs.cmu.edu/~pprk). 
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frame such that  is colinear with the axis of wheel 2. Figure 3.11 shows the robot and its
local reference frame arranged in this manner.

We assume that the distance between each wheel and  is , and that all three wheels
have the same radius, . Once again, the value of  can be computed as a combination of
the rolling constraints of the robot’s three omnidirectional wheels, as in equation (3.28). As
with the differential- drive robot, since this robot has no steerable wheels,  simplifies
to :

 (3.31)

We calculate  using the matrix elements of the rolling constraints for the Swedish
wheel, given by equation (3.19). But to use these values, we must establish the values

 for each wheel. Referring to figure (3.8), we can see that  for the Swedish 90-
degree wheel. Note that this immediately simplifies equation (3.19) to equation (3.12), the
rolling constraints of a fixed standard wheel. Given our particular placement of the local
reference frame, the value of  for each wheel is easily computed:

. Furthermore,  for all wheels because the
wheels are tangent to the robot’s circular body. Constructing and simplifying  using
equation (3.12) yields

Figure 3.11
The local reference frame plus detailed parameters for wheel 1.
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 (3.32)

Once again, computing the value of  requires calculating the inverse, , as needed
in equation (3.31). One approach would be to apply rote methods for calculating the inverse
of a 3 x 3 square matrix. A second approach would be to compute the contribution of each
Swedish wheel to chassis motion, as shown in section 3.2.2. We leave this process as an
exercise for the enthusiast. Once the inverse is obtained,  can be isolated:

 (3.33)

Consider a specific omnidrive chassis with  and  for all wheels. The robot’s
local reference frame and global reference frame are aligned, so that . If wheels 1,
2, and 3 spin at speeds , what is the resulting motion of the
whole robot? Using the equation above, the answer can be calculated readily:

 (3.34)

So this robot will move instantaneously along the -axis with positive speed and along
the axis with negative speed while rotating clockwise. We can see from the above exam-
ples that robot motion can be predicted by combining the rolling constraints of individual
wheels.
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The sliding constraints comprising  can be used to go even further, enabling us
to evaluate the maneuverability and workspace of the robot rather than just its predicted
motion. Next, we examine methods for using the sliding constraints, sometimes in conjunc-
tion with rolling constraints, to generate powerful analyses of the maneuverability of a
robot chassis.

3.3 Mobile Robot Maneuverability

The kinematic mobility of a robot chassis is its ability to directly move in the environment.
The basic constraint limiting mobility is the rule that every wheel must satisfy its sliding
constraint. Therefore, we can formally derive robot mobility by starting from equation
(3.26).

In addition to instantaneous kinematic motion, a mobile robot is able to further manip-
ulate its position, over time, by steering steerable wheels. As we will see in section 3.3.3,
the overall maneuverability of a robot is thus a combination of the mobility available based
on the kinematic sliding constraints of the standard wheels, plus the additional freedom
contributed by steering and spinning the steerable standard wheels.

3.3.1   Degree of mobility
Equation (3.26) imposes the constraint that every wheel must avoid any lateral slip. Of
course, this holds separately for each and every wheel, and so it is possible to specify this
constraint separately for fixed and for steerable standard wheels:

 (3.35)

 (3.36)

For both of these constraints to be satisfied, the motion vector  must belong to
the null space of the projection matrix , which is simply a combination of  and

. Mathematically, the null space of  is the space N such that for any vector n in
N, . If the kinematic constraints are to be honored, then the motion of the
robot must always be within this space . The kinematic constraints [equations (3.35) and
(3.36)] can also be demonstrated geometrically using the concept of a robot’s instantaneous
center of rotation ( ).

Consider a single standard wheel. It is forced by the sliding constraint to have zero lat-
eral motion. This can be shown geometrically by drawing a zero motion line through its
horizontal axis, perpendicular to the wheel plane (figure 3.12). At any given instant, wheel
motion along the zero motion line must be zero. In other words, the wheel must be moving
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instantaneously along some circle of radius  such that the center of that circle is located
on the zero motion line. This center point, called the instantaneous center of rotation, may
lie anywhere along the zero motion line. When R is at infinity, the wheel moves in a straight
line.

A robot such as the Ackerman vehicle in figure 3.12a can have several wheels, but must
always have a single . Because all of its zero motion lines meet at a single point, there
is a single solution for robot motion, placing the  at this meet point.

This  geometric construction demonstrates how robot mobility is a function of the
number of constraints on the robot’s motion, not the number of wheels. In figure 3.12b, the
bicycle shown has two wheels, and . Each wheel contributes a constraint, or a zero
motion line. Taken together the two constraints result in a single point as the only remaining
solution for the . This is because the two constraints are independent, and thus each
further constrains overall robot motion.

But in the case of the differential drive robot in figure 3.13a, the two wheels are aligned
along the same horizontal axis. Therefore, the  is constrained to lie along a line, not at
a specific point. In fact, the second wheel imposes no additional kinematic constraints on
robot motion since its zero motion line is identical to that of the first wheel. Thus, although
the bicycle and differential-drive chassis have the same number of nonomnidirectional
wheels, the former has two independent kinematic constraints while the latter has only one.

Figure 3.12
(a) Four-wheel with car-like Ackerman steering. (b) bicycle.
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The Ackerman vehicle of figure 3.12a demonstrates another way in which a wheel may
be unable to contribute an independent constraint to the robot kinematics. This vehicle has
two steerable standard wheels. Given the instantaneous position of just one of these steer-
able wheels and the position of the fixed rear wheels, there is only a single solution for the

. The position of the second steerable wheel is absolutely constrained by the .
Therefore, it offers no independent constraints to robot motion.

Robot chassis kinematics is therefore a function of the set of independent constraints
arising from all standard wheels. The mathematical interpretation of independence is
related to the rank of a matrix. Recall that the rank of a matrix is the smallest number of
independent rows or columns. Equation (3.26) represents all sliding constraints imposed by
the wheels of the mobile robot. Therefore  is the number of independent con-
straints.

The greater the number of independent constraints, and therefore the greater the rank of
, the more constrained is the mobility of the robot. For example, consider a robot

with a single fixed standard wheel. Remember that we consider only standard wheels. This
robot may be a unicycle or it may have several Swedish wheels; however, it has exactly one
fixed standard wheel. The wheel is at a position specified by parameters  relative
to the robot’s local reference frame.  is comprised of  and . However, since
there are no steerable standard wheels  is empty and therefore  contains only

. Because there is one fixed standard wheel, this matrix has a rank of one and therefore
this robot has a single independent constrain on mobility:

 (3.37)

Figure 3.13
(a) Differential drive robot with two individually motorized wheels and a castor wheel, e.g., the Pyg-
malion robot at EPFL. (b) Tricycle with two fixed standard wheels and one steered standard wheel,
e.g. Piaggio minitransporter.
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Now let us add an additional fixed standard wheel to create a differential-drive robot by
constraining the second wheel to be aligned with the same horizontal axis as the original
wheel. Without loss of generality, we can place point  at the midpoint between the centers
of the two wheels. Given  for wheel  and  for wheel , it
holds geometrically that . Therefore, in this
case, the matrix  has two constraints but a rank of one:

 (3.38)

Alternatively, consider the case when  is placed in the wheel plane of  but with
the same orientation, as in a bicycle with the steering locked in the forward position. We
again place point  between the two wheel centers, and orient the wheels such that they lie
on axis . This geometry implies that 
and, therefore, the matrix  retains two independent constraints and has a rank of two:

 (3.39)

In general, if  then the vehicle can, at best, only travel along a circle or
along a straight line. This configuration means that the robot has two or more independent
constraints due to fixed standard wheels that do not share the same horizontal axis of rota-
tion. Because such configurations have only a degenerate form of mobility in the plane, we
do not consider them in the remainder of this chapter. Note, however, that some degenerate
configurations such as the four-wheeled slip/skid steering system are useful in certain envi-
ronments, such as on loose soil and sand, even though they fail to satisfy sliding constraints.
Not surprisingly, the price that must be paid for such violations of the sliding constraints is
that dead reckoning based on odometry becomes less accurate and power efficiency is
reduced dramatically.

In general, a robot will have zero or more fixed standard wheels and zero or more steer-
able standard wheels. We can therefore identify the possible range of rank values for any
robot: . Consider the case . This is only possible
if there are zero independent kinematic constraints in . In this case there are neither
fixed nor steerable standard wheels attached to the robot frame: .

Consider the other extreme, . This is the maximum possible rank
since the kinematic constraints are specified along three degrees of freedom (i.e., the con-
straint matrix is three columns wide). Therefore, there cannot be more than three indepen-
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dent constraints. In fact, when , then the robot is completely constrained
in all directions and is, therefore, degenerate since motion in the plane is totally impossible.

Now we are ready to formally define a robot’s degree of mobility :

 (3.40)

The dimensionality of the null space ( ) of matrix  is a measure of the
number of degrees of freedom of the robot chassis that can be immediately manipulated
through changes in wheel velocity. It is logical therefore that  must range between 0
and 3. 

Consider an ordinary differential-drive chassis. On such a robot there are two fixed stan-
dard wheels sharing a common horizontal axis. As discussed above, the second wheel adds
no independent kinematic constraints to the system. Therefore,  and

. This fits with intuition: a differential drive robot can control both the rate of its
change in orientation and its forward/reverse speed, simply by manipulating wheel veloci-
ties. In other words, its  is constrained to lie on the infinite line extending from its
wheels’ horizontal axles.

In contrast, consider a bicycle chassis. This configuration consists of one fixed standard
wheel and one steerable standard wheel. In this case, each wheel contributes an indepen-
dent sliding constraint to . Therefore, . Note that the bicycle has the same
total number of nonomidirectional wheels as the differential-drive chassis, and indeed one
of its wheels is steerable. Yet it has one less degree of mobility. Upon reflection this is
appropriate. A bicycle only has control over its forward/reverse speed by direct manipula-
tion of wheel velocities. Only by steering can the bicycle change its .

As expected, based on equation (3.40) any robot consisting only of omnidirectional
wheels such as Swedish or spherical wheels will have the maximum mobility, .
Such a robot can directly manipulate all three degrees of freedom.

3.3.2   Degree of steerability
The degree of mobility defined above quantifies the degrees of controllable freedom based
on changes to wheel velocity. Steering can also have an eventual impact on a robot chassis
pose , although the impact is indirect because after changing the angle of a steerable stan-
dard wheel, the robot must move for the change in steering angle to have impact on pose.

As with mobility, we care about the number of independently controllable steering
parameters when defining the degree of steerability :

 (3.41)
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Recall that in the case of mobility, an increase in the rank of  implied more kine-
matic constraints and thus a less mobile system. In the case of steerability, an increase in
the rank of  implies more degrees of steering freedom and thus greater eventual
maneuverability. Since  includes , this means that a steered standard wheel
can both decrease mobility and increase steerability: its particular orientation at any instant
imposes a kinematic constraint, but its ability to change that orientation can lead to addi-
tional trajectories.

The range of  can be specified: . The case  implies that the robot
has no steerable standard wheels, . The case  is most common when a robot
configuration includes one or more steerable standard wheels. 

For example, consider an ordinary automobile. In this case  and . But
the fixed wheels share a common axle and so . The fixed wheels and any
one of the steerable wheels constrain the  to be a point along the line extending from
the rear axle. Therefore, the second steerable wheel cannot impose any independent kine-
matic constraint and so . In this case  and .

The case  is only possible in robots with no fixed standard wheels: .
Under these circumstances, it is possible to create a chassis with two separate steerable
standard wheels, like a pseudobicycle (or the two-steer) in which both wheels are steerable.
Then, orienting one wheel constrains the  to a line while the second wheel can con-
strain the  to any point along that line. Interestingly, this means that the 
implies that the robot can place its  anywhere on the ground plane.

3.3.3   Robot maneuverability
The overall degrees of freedom that a robot can manipulate, called the degree of maneuver-
ability , can be readily defined in terms of mobility and steerability:

 (3.42)

Therefore maneuverability includes both the degrees of freedom that the robot manipu-
lates directly through wheel velocity and the degrees of freedom that it indirectly manipu-
lates by changing the steering configuration and moving. Based on the investigations of the
previous sections, one can draw the basic types of wheel configurations. They are depicted
in figure 3.14

Note that two robots with the same are not necessarily equivalent. For example, dif-
ferential drive and tricycle geometries (figure 3.13) have equal maneuverability .
In differential drive all maneuverability is the result of direct mobility because  and

. In the case of a tricycle the maneuverability results from steering also: 
and . Neither of these configurations allows the  to range anywhere on the
plane. In both cases, the must lie on a predefined line with respect to the robot refer-
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ence frame. In the case of differential drive, this line extends from the common axle of the
two fixed standard wheels, with the differential wheel velocities setting the  point on
this line. In a tricycle, this line extends from the shared common axle of the fixed wheels,
with the steerable wheel setting the  point along this line.

More generally, for any robot with  the  is always constrained to lie on a
line and for any robot with  the  can be set to any point on the plane.

One final example will demonstrate the use of the tools we have developed above. One
common robot configuration for indoor mobile robotics research is the synchro drive con-
figuration (figure 2.22). Such a robot has two motors and three wheels that are locked
together. One motor provides power for spinning all three wheels while the second motor
provides power for steering all three wheels. In a three-wheeled synchro drive robot

 and . Therefore  can be used to determine both and
. The three wheels do not share a common axle, therefore two of the three contribute

independent sliding constraints. The third must be dependent on these two constraints for
motion to be possible. Therefore  and . This is intuitively cor-
rect. A synchro drive robot with the steering frozen manipulates only one degree of free-
dom, consisting of traveling back and forth on a straight line.

However an interesting complication occurs when considering . Based on equation
(3.41) the robot should have . Indeed, for a three-wheel-steering robot with the geo-
metric configuration of a synchro drive robot this would be correct. However, we have
additional information: in a synchro drive configuration a single motor steers all three
wheels using a belt drive. Therefore, although ideally, if the wheels were independently
steerable, then the system would achieve , in the case of synchro drive the drive

Figure 3.14
The five basic types of three-wheel configurations. The spherical wheels can be replaced by castor or
Swedish wheels without influencing maneuverability. More configurations with various numbers of
wheels are found in chapter 2.

Omnidirectional
δ M =3 
δ m =3 
δ s =0

Differential
δ M =2 
δ m =2 
δ s =0 

Omni-Steer
δ M =3 
δ m =2 
δ s =1 

Tricycle
δ M =2 
δ m =1 
δ s =1 

Two-Steer
δ M =3 
δ m =1 
δ s =2 

ICR

ICR
δM 2= ICR

δM 3= ICR

Nf 0= Ns 3= rank C1s βs( ) δm

δs

rank C1s βs( ) 2= δm 1=

δs

δs 2=

δs 2=



74 Chapter 3

system further constrains the kinematics such that in reality . Finally, we can com-
pute maneuverability based on these values:  for a synchro drive robot.

This result implies that a synchro drive robot can only manipulate, in total, two degrees
of freedom. In fact, if the reader reflects on the wheel configuration of a synchro drive robot
it will become apparent that there is no way for the chassis orientation to change. Only the

 position of the chassis can be manipulated and so, indeed, a synchro drive robot has
only two degrees of freedom, in agreement with our mathematical conclusion.

3.4 Mobile Robot Workspace

For a robot, maneuverability is equivalent to its control degrees of freedom. But the robot
is situated in some environment, and the next question is to situate our analysis in the envi-
ronment. We care about the ways in which the robot can use its control degrees of freedom
to position itself in the environment. For instance, consider the Ackerman vehicle, or auto-
mobile. The total number of control degrees of freedom for such a vehicle is , one
for steering and the second for actuation of the drive wheels. But what is the total degrees
of freedom of the vehicle in its environment? In fact it is three: the car can position itself
on the plane at any  point and with any angle .

Thus identifying a robot’s space of possible configurations is important because surpris-
ingly it can exceed . In addition to workspace, we care about how the robot is able to
move between various configurations: what are the types of paths that it can follow and,
furthermore, what are its possible trajectories through this configuration space? In the
remainder of this discussion, we move away from inner kinematic details such as wheels
and focus instead on the robot chassis pose and the chassis degrees of freedom. With this
in mind, let us place the robot in the context of its workspace now.

3.4.1   Degrees of freedom
In defining the workspace of a robot, it is useful to first examine its admissible velocity
space. Given the kinematic constraints of the robot, its velocity space describes the inde-
pendent components of robot motion that the robot can control. For example, the velocity
space of a unicycle can be represented with two axes, one representing the instantaneous
forward speed of the unicycle and the second representing the instantaneous change in ori-
entation, , of the unicycle.

The number of dimensions in the velocity space of a robot is the number of indepen-
dently achievable velocities. This is also called the differentiable degrees of freedom
( ). A robot’s    is always equal to its degree of mobility . For example,
a bicycle has the following degree of maneuverability: . The

 of a bicycle is indeed 1.
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In contrast to a bicycle, consider an omnibot, a robot with three Swedish wheels. We
know that in this case there are zero standard wheels and therefore

. So, the omnibot has three differential degrees of freedom.
This is appropriate, given that because such a robot has no kinematic motion constraints, it
is able to independently set all three pose variables: .

Given the difference in DDOF between a bicycle and an omnibot, consider the overall
degrees of freedom in the workspace of each configuration. The omnibot can achieve any
pose  in its environment and can do so by directly achieving the goal positions of
all three axes simultaneously because . Clearly, it has a workspace with

.
Can a bicycle achieve any pose  in its environment? It can do so, but achieving

some goal points may require more time and energy than an equivalent omnibot. For exam-
ple, if a bicycle configuration must move laterally 1 m, the simplest successful maneuver
would involve either a spiral or a back-and-forth motion similar to parallel parking of auto-
mobiles. Nevertheless, a bicycle can achieve any  and therefore the workspace of
a bicycle has =3 as well.

Clearly, there is an inequality relation at work: . Although the
dimensionality of a robot’s workspace is an important attribute, it is clear from the example
above that the particular paths available to a robot matter as well. Just as workspace DOF
governs the robot’s ability to achieve various poses, so the robot’s  governs its abil-
ity to achieve various paths.

3.4.2   Holonomic robots
In the robotics community, when describing the path space of a mobile robot, often the con-
cept of holonomy is used. The term holonomic has broad applicability to several mathemat-
ical areas, including differential equations, functions and constraint expressions. In mobile
robotics, the term refers specifically to the kinematic constraints of the robot chassis. A
holonomic robot is a robot that has zero nonholonomic kinematic constraints. Conversely,
a nonholonomic robot is a robot with one or more nonholonomic kinematic constraints.

A holonomic kinematic constraint can be expressed as an explicit function of position
variables only. For example, in the case of a mobile robot with a single fixed standard
wheel, a holonomic kinematic constraint would be expressible using 

 only. Such a constraint may not use derivatives of these values, such as  or . A
nonholonomic kinematic constraint requires a differential relationship, such as the deriva-
tive of a position variable. Furthermore, it cannot be integrated to provide a constraint in
terms of the position variables only. Because of this latter point of view, nonholonomic sys-
tems are often called nonintegrable systems.
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Consider the fixed standard wheel sliding constraint:

 (3.43)

This constraint must use robot motion  rather than pose  because the point is to con-
strain robot motion perpendicular to the wheel plane to be zero. The constraint is noninte-
grable, depending explicitly on robot motion. Therefore, the sliding constraint is a
nonholonomic constraint. Consider a bicycle configuration, with one fixed standard wheel
and one steerable standard wheel. Because the fixed wheel sliding constraint will be in
force for such a robot, we can conclude that the bicycle is a nonholonomic robot.

But suppose that one locks the bicycle steering system, so that it becomes two fixed stan-
dard wheels with separate but parallel axes. We know that  for such a configura-
tion. Is it nonholonomic? Although it may not appear so because of the sliding and rolling
constraints, the locked bicycle is actually holonomic. Consider the workspace of this
locked bicycle. It consists of a single infinite line along which the bicycle can move (assum-
ing the steering was frozen straight ahead). For formulaic simplicity, assume that this infi-
nite line is aligned with  in the global reference frame and that

. In this case the sliding constraints of both wheels can be
replaced with an equally complete set of constraints on the robot pose: .
This eliminates two nonholonomic constraints, corresponding to the sliding constraints of
the two wheels. 

The only remaining nonholonomic kinematic constraints are the rolling constraints for
each wheel:

 (3.44)

This constraint is required for each wheel to relate the speed of wheel spin to the speed
of motion projected along the wheel plane. But in the case of our locked bicycle, given the
initial rotational position of a wheel at the origin, , we can replace this constraint with
one that directly relates position on the line, x, with wheel rotation angle, :

.
The locked bicycle is an example of the first type of holonomic robot – where constraints

do exist but are all holonomic kinematic constraints. This is the case for all holonomic
robots with . The second type of holonomic robot exists when there are no kinematic
constraints, that is,  and . Since there are no kinematic constraints, there are
also no nonholonomic kinematic constraints and so such a robot is always holonomic. This
is the case for all holonomic robots with .
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An alternative way to describe a holonomic robot is based on the relationship between
the differential degrees of freedom of a robot and the degrees of freedom of its workspace:
a robot is holonomic if and only if  = . Intuitively, this is because it is only
through nonholonomic constraints (imposed by steerable or fixed standard wheels) that a
robot can achieve a workspace with degrees of freedom exceeding its differential degrees
of freedom,  > . Examples include differential drive and bicycle/tricycle con-
figurations.

In mobile robotics, useful chassis generally must achieve poses in a workspace with
dimensionality 3, so in general we require  for the chassis. But the “holonomic”
abilities to maneuver around obstacles without affecting orientation and to track at a target
while following an arbitrary path are important additional considerations. For these rea-
sons, the particular form of holonomy most relevant to mobile robotics is that of

. We define this class of robot configurations as omnidirectional: an
omnidirectional robot is a holonomic robot with .

3.4.3   Path and trajectory considerations
In mobile robotics, we care not only about the robot’s ability to reach the required final con-
figurations but also about how it gets there. Consider the issue of a robot’s ability to follow
paths: in the best case, a robot should be able to trace any path through its workspace of
poses. Clearly, any omnidirectional robot can do this because it is holonomic in a three-
dimensional workspace. Unfortunately, omnidirectional robots must use unconstrained
wheels, limiting the choice of wheels to Swedish wheels, castor wheels, and spherical
wheels. These wheels have not yet been incorporated into designs allowing far larger
amounts of ground clearance and suspensions. Although powerful from a path space point
of view, they are thus much less common than fixed and steerable standard wheels, mainly
because their design and fabrication are somewhat complex and expensive. 

Additionally, nonholonomic constraints might drastically improve stability of move-
ments. Consider an omnidirectional vehicle driving at high speed on a curve with constant
diameter. During such a movement the vehicle will be exposed to a non-negligible centrip-
etal force. This lateral force pushing the vehicle out of the curve has to be counteracted by
the motor torque of the omnidirectional wheels. In case of motor or control failure, the vehi-
cle will be thrown out of the curve. However, for a car-like robot with kinematic con-
straints, the lateral forces are passively counteracted through the sliding constraints,
mitigating the demands on motor torque.

But recall an earlier example of high maneuverability using standard wheels: the bicycle
on which both wheels are steerable, often called the two-steer. This vehicle achieves a
degree of steerability of 2, resulting in a high degree of maneuverability:

. Interestingly, this configuration is not holonomic, yet has a
high degree of maneuverability in a workspace with . 
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The maneuverability result, , means that the two-steer can select any  by
appropriately steering its two wheels. So, how does this compare to an omnidirectional
robot? The ability to manipulate its  in the plane means that the two-steer can follow
any path in its workspace. More generally, any robot with  can follow any path in
its workspace from its initial pose to its final pose. An omnidirectional robot can also follow
any path in its workspace and, not surprisingly, since  in an omnidirectional robot,
then it must follow that .

But there is still a difference between a degree of freedom granted by steering versus by
direct control of wheel velocity. This difference is clear in the context of trajectories rather
than paths. A trajectory is like a path, except that it occupies an additional dimension: time.
Therefore, for an omnidirectional robot on the ground plane a path generally denotes a trace
through a 3D space of pose; for the same robot a trajectory denotes a trace through the 4D
space of pose plus time. 

For example, consider a goal trajectory in which the robot moves along axis  at a con-
stant speed of 1 m/s for 1 second, then changes orientation counterclockwise 90 degrees
also in 1 second, then moves parallel to axis  for 1 final second. The desired 3-second
trajectory is shown in figure 3.15, using plots of  and  in relation to time. 
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Figure 3.15
Example of robot trajectory with omnidirectional robot: move for 1 second with constant speed of
1 m/s along axis ; change orientation counterclockwise 90 degree, in 1 second; move for 1 second
with constant speed of 1 m/s along axis .
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Figure 3.16
Example of robot trajectory similar to figure 3.15 with two steered wheels: move for 1 second with
constant speed of 1 m/s along axis ; rotate steered wheels -50 / 50 degree respectively; change ori-
entation counterclockwise 90 degree in 1 second; rotate steered wheels 50 / -50 degree respectively;
move for 1 second with constant speed of 1 m/s along axis .
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Can the omnidirectional robot accomplish this trajectory? We assume that the robot can
achieve some arbitrary, finite velocity at each wheel. For simplicity, we further assume that
acceleration is infinite; that is, it takes zero time to reach any desired velocity. Under these
assumptions, the omnidirectional robot can indeed follow the trajectory of figure 3.15. The
transition between the motion of second 1 and second 2, for example, involves only
changes to the wheel velocities.

Because the two-steer has , it must be able to follow the path that would result
from projecting this trajectory into timeless workspace. However, it cannot follow this 4D
trajectory. Even if steering velocity is finite and arbitrary, although the two-steer would be
able to change steering speed instantly, it would have to wait for the angle of the steerable
wheels to change to the desired position before initiating a change in the robot chassis ori-
entation. In short, the two-steer requires changes to internal degrees of freedom and
because these changes take time, arbitrary trajectories are not attainable. Figure 3.16
depicts the most similar trajectory that a two-steer can achieve. In contrast to the desired
three phases of motion, this trajectory has five phases. 

3.5 Beyond Basic Kinematics

The above discussion of mobile robot kinematics is only an introduction to a far richer
topic. When speed and force are also considered, as is particularly necessary in the case of
high-speed mobile robots, dynamic constraints must be expressed in addition to kinematic
constraints. Furthermore, many mobile robots such as tank-type chassis and four-wheel
slip/skid systems violate the kinematic models above. When analyzing such systems, it is
often necessary to explicitly model the dynamics of viscous friction between the robot and
the ground plane. 

More significantly, the kinematic analysis of a mobile robot system provides results
concerning the theoretical workspace of that mobile robot. However to effectively move in
this workspace a mobile robot must have appropriate actuation of its degrees of freedom.
This problem, called motorization, requires further analysis of the forces that must be
actively supplied to realize the kinematic range of motion available to the robot.

In addition to motorization, there is the question of controllability: under what condi-
tions can a mobile robot travel from the initial pose to the goal pose in bounded time?
Answering this question requires knowledge – both knowledge of the robot kinematics and
knowledge of the control systems that can be used to actuate the mobile robot. Mobile robot
control is therefore a return to the practical question of designing a real-world control algo-
rithm that can drive the robot from pose to pose using the trajectories demanded for the
application.

δM 3=
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3.6 Motion Control (Kinematic Control)

As seen above, motion control might not be an easy task for nonholonomic systems. How-
ever, it has been studied by various research groups, for example, [8, 39, 52, 53, 137] and
some adequate solutions for motion control of a mobile robot system are available.

3.6.1   Open loop control (trajectory-following)
The objective of a kinematic controller is to follow a trajectory described by its position or
velocity profile as a function of time. This is often done by dividing the trajectory (path) in
motion segments of clearly defined shape, for example, straight lines and segments of a cir-
cle. The control problem is thus to precompute a smooth trajectory based on line and circle
segments which drives the robot from the initial position to the final position (figure 3.18).
This approach can be regarded as open-loop motion control, because the measured robot
position is not fed back for velocity or position control. It has several disadvantages: 

• It is not at all an easy task to precompute a feasible trajectory if all limitations and con-
straints of the robot’s velocities and accelerations have to be considered.

• The robot will not automatically adapt or correct the trajectory if dynamic changes of
the environment occur.

Figure 3.17
Typical situation for feedback control of a mobile robot
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• The resulting trajectories are usually not smooth, because the transitions from one tra-
jectory segment to another are, for most of the commonly used segments (e.g., lines and
part of circles), not smooth. This means there is a discontinuity in the robot’s accelera-
tion.

3.6.2   Feedback control
A more appropriate approach in motion control of a mobile robot is to use a real-state feed-
back controller. With such a controller the robot’s path-planning task is reduced to setting
intermediate positions (subgoals) lying on the requested path. One useful solution for a sta-
bilizing feedback control of differential-drive mobile robots is presented in section 3.6.2.1.
It is very similar to the controllers presented in [39, 100]. Others can be found in [8, 52, 53,
137].

3.6.2.1   Problem statement
Consider the situation shown in figure 3.17, with an arbitrary position and orientation of
the robot and a predefined goal position and orientation. The actual pose error vector given
in the robot reference frame  is  with , and  being the goal
coordinates of the robot. 

Figure 3.18
Open-loop control of a mobile robot based on straight lines and circular trajectory segments.
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The task of the controller layout is to find a control matrix , if it exists

       with  (3.45)

such that the control of  and  

 (3.46)

drives the error  toward zero.2

 (3.47)

2. Remember that v(t) is always heading in the XR direction of the robot’s reference frame due to the
nonholonomic constraint.

K

Figure 3.19
Robot kinematics and its frames of interests.
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3.6.2.2   Kinematic model
We assume, without loss of generality, that the goal is at the origin of the inertial frame (fig-
ure 3.19). In the following the position vector  is always represented in the inertial
frame.

The kinematics of a differential-drive mobile robot described in the inertial frame
 is given by

 (3.48)

where  and  are the linear velocities in the direction of the  and  of the inertial
frame.

Let  denote the angle between the xR axis of the robot’s reference frame and the vector
 connecting the center of the axle of the wheels with the final position. If , where

 (3.49)

then consider the coordinate transformation into polar coordinates with its origin at the goal
position.

 (3.50)

 (3.51)

 (3.52)

This yields a system description, in the new polar coordinates, using a matrix equation

 (3.53)

where  is the distance between the center of the robot’s wheel axle and the goal position,
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 denotes the angle between the  axis of the robot reference frame, and the  axis asso-
ciated with the final position  and  are the tangent and the angular velocity respectively.

On the other hand, if , where

 (3.54)

redefining the forward direction of the robot by setting , we obtain a system
described by a matrix equation of the form

 (3.55)

3.6.2.3   Remarks on the kinematic model in polar coordinates [eq. (3.53) and (3.55)]

• The coordinate transformation is not defined at ; as in such a point the deter-
minant of the Jacobian matrix of the transformation is not defined, that is unbounded.

• For  the forward direction of the robot points toward the goal, for  it is the
reverse direction.

• By properly defining the forward direction of the robot at its initial configuration, it is
always possible to have  at . However, this does not mean that  remains
in  for all time . Hence, to avoid that the robot changes direction during approaching
the goal, it is necessary to determine, if possible, the controller in such a way that 
for all , whenever . The same applies for the reverse direction (see stability
issues below).

3.6.2.4   The control law
The control signals  and  must now be designed to drive the robot from its actual con-
figuration, say , to the goal position. It is obvious that equation (3.53) presents
a discontinuity at ; thus the theorem of Brockett does not obstruct smooth stabiliz-
ability.

If we consider now the linear control law

 (3.56)
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we get with equation (3.53) a closed-loop system described by

 (3.58)

The system does not have any singularity at  and has a unique equilibrium point
at . Thus it will drive the robot to this point, which is the goal posi-
tion.

• In the Cartesian coordinate system the control law [equation (3.57)] leads to equations
which are not defined at .

• Be aware of the fact that the angles  and  have always to be expressed in the range
.

• Observe that the control signal  has always a constant sign, that is, it is positive when-
ever  and it is always negative otherwise. This implies that the robot performs
its parking maneuver always in a single direction and without reversing its motion.

In figure 3.20 you find the resulting paths when the robot is initially on a circle in the
plane. All movements have smooth trajectories toward the goal in the center. The con-

trol parameters for this simulation were set to

.  (3.59)

3.6.2.5   Local stability issue
It can further be shown, that the closed-loop control system [equation (3.58)] is locally
exponentially stable if

 ;     ;     (3.60)

Proof:
Linearized around the equilibrium ( , ) position, equation (3.58) can

be written as

,  (3.61)
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Figure 3.20
Resulting paths when the robot is initially on the unit circle in the x,y plane.
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hence it is locally exponentially stable if the eigenvalues of the matrix 

 (3.62)

all have a negative real part. The characteristic polynomial of the matrix  is

 (3.63)

and all roots have negative real part if

 ;     ;     (3.64)

which proves the claim.
For robust position control, it might be advisable to apply the strong stability condition,

which ensures that the robot does not change direction during its approach to the goal:

 ;     ;     (3.65)

This implies that  for all t, whenever  and  for all , whenever
 respectively. This strong stability condition has also been verified in applica-

tions.
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