
19-dict-I

November 8, 2020

1 Dictionaries

Dictionaries are a very useful kind of data-structure. They work more or less like lists, except that
instead of indexing elements by a number (like L[4]), you can index them using almost anything
(strings, for example: D["Qatar"]). More precisely, a dictionary associates keys (the indices) with
values. Keys are unique and are associated with only one value.

Another way of seeing a dictionary is as a set of key/value pairs. Note that there is no implicit
order on the pairs, and the keys are unique.

1.1 Creating dictionaries

A concrete dictionary can be declared using curly braces and colons, like this:

[1]: # COVID-19 infected persons, as of Nov. 04, 2020
covid = {"Qatar": 133370,

"USA": 9706838,
"Italy": 790377,
"Iran": 646164,
"South Korea": 26925,
"Oman": 116847,
"Egypt": 108122,
"Jordan": 91234,
"Lebanon": 87097,
"India": 8353493

}

To the left of evey colon is the “key” and to the right of it is the “value”.

Dictionaries can also be created from a list of pairs.

[2]: L = [("Blue", 10), ("Red", 7), ("Green", 15), ("Black", 12)]
colors = dict(L)
print(colors)

{'Blue': 10, 'Red': 7, 'Green': 15, 'Black': 12}

The empty dictionary is created either using the function dict() or empty curly braces {}.

1



[3]: d1 = dict()
d2 = {}
print(d1)
print(d2)

{}
{}

1.2 Adding entries

Once you have a dictionary (possibly an empty one), you can add entries to it by assigning values
using appropriate indexes:

[4]: capitals = dict()
capitals["Qatar"] = "Doha"
capitals["Germany"] = "Berlin"
capitals["Vietnam"] = "Hanoi"
capitals["Nigeria"] = "Lagos"
print(capitals)

{'Qatar': 'Doha', 'Germany': 'Berlin', 'Vietnam': 'Hanoi', 'Nigeria': 'Lagos'}

Observe that you can add an entry by defining a non-existent key (i.e., a key that does not exist yet
in the dictionary), index the dictionary through that key, and assign a value (any valid value with
a valid type) to it. If you assign a value to an existing key, the old value is overwritten. Hence,
dictionaries are mutable (similar to lists but dissimilar to tuples and strings).

[5]: capitals["Nigeria"] = "Abuja"
print(capitals)

{'Qatar': 'Doha', 'Germany': 'Berlin', 'Vietnam': 'Hanoi', 'Nigeria': 'Abuja'}

1.3 Getting values

Values can be obtained by indexing the dictionary through keys:

[6]: v = capitals["Nigeria"]
print(v)

Abuja

If the key is not there, python raises a KeyError.

[7]: v = capitals["Russia"]

---------------------------------------------------------------------------

KeyError Traceback (most recent call last)

2



<ipython-input-7-9951b880e302> in <module>()
----> 1 v = capitals["Russia"]

KeyError: 'Russia'

To avoid KeyError errors, you can check if the key is in the dictionary before trying to access its
corresponding value (see below), or you can use the get() function. This function is useful if you
want to get a default value in case the key is non-existent. The first parameter of ‘get()’ is the key
of the value that you want to access and the second parameter is the default value that will be
returned in case the key is non-existent.

[8]: v1 = covid.get("Qatar", 0)
print("Number of cases in Qatar:", v1)

v2 = covid.get("Easter Island", 0)
print("Number of cases in Easter Island:", v2)

Number of cases in Qatar: 470
Number of cases in Easter Island: 0

1.3.1 d.values()

We can get all the values in a dictionary via calling the values() function, which returns an “ob-
ject” containing all the values in the dictionary.

[9]: vals = capitals.values()
print(vals)

dict_values(['Doha', 'Berlin', 'Hanoi', 'Abuja'])

Observe that there is a list inside the returned object. You can get this list by simply wrap it with
list():

[10]: lvals = list(vals)
print(lvals)

['Doha', 'Berlin', 'Hanoi', 'Abuja']

1.4 Getting keys

There is no direct way to get one particular key from the dictionary (since they are not indexed
like values).

To check if a key is in a dictionary, you can use in/not in. This is vey useful to avoid the KeyError
shown above!

[11]: "Qatar" in capitals

3



[11]: True

[12]: "Jordan" not in capitals

[12]: True

1.4.1 d.keys()

We can get all keys in a dictionary via calling the function keys(). Similar to values(), it returns
an object with all the keys in the dictionary. Again, to get a list out of it, wrap it with list().

[13]: keys = list(capitals.keys())
print(keys)

['Qatar', 'Germany', 'Vietnam', 'Nigeria']

1.5 Number of entries

The function len(d) returns the number of entries in the dictionary.

[14]: print(len(capitals))

4

1.6 Removing entries

An entry at key k can be removed from dictionary d via the del command:

[15]: del covid["Oman"]
print(covid)

{'Qatar': 470, 'US': 19624, 'Italy': 47021, 'China': 81286, 'Iran': 19644,
'South Korea': 8652, 'Egypt': 285, 'Jordan': 85, 'Lebanon': 177, 'Philipines':
230, 'India': 250}

1.7 Looping through dictionaries

We can loop through dictionaries using a for loop, where the loop variable will range among the
dictionary’s keys.

[16]: for country in capitals:
print("country =", country)
if capitals[country] == "Hanoi":

print(country + "'s capital is Hanoi")

country = Qatar
country = Germany
country = Vietnam

4



Vietnam's capital is Hanoi
country = Nigeria

1.8 Exercise 1

Ali recently got a 3D printer, and decided to open a business for printing messages in 3D letters.
Printing with those printers is kind of a slow, so he would like to group letter for printing. For
example, if the message is "Congratulations, Ahmad!", Ali would like to print 3 "a"s at once.

Help Ali figure out how much of each character he needs to print. Implement the function
charFreq(s) that takes a string (the message) as a parameter, and returns a dictionary where
the keys are characters, and values are the number of times Ali needs to print them. Remember
that: - spaces do not need to be printed - capitalization matters (i.e. "a" is different from "A") -
punctuation needs to be printed

[17]: def charFreq(s):
return {}

1.9 Exercise 2

Suppose you have a dictionary d of COVID-19 cases as the one above, where the keys are
countries and the values are the numbers of cases in these countries. Implement the function
sortByCases(d) that returns a list of countries in decreasing order of COVID-19 cases.

[18]: def sortByCases(d):
return []

5


	Dictionaries
	Creating dictionaries
	Adding entries
	Getting values
	d.values()

	Getting keys
	d.keys()

	Number of entries
	Removing entries
	Looping through dictionaries
	Exercise 1
	Exercise 2


