
15-122: Principles of Imperative Computation
Lab 7: #pun Shyam Raghavan, Rob Simmons
Collaboration: In lab, we encourage collaboration and discussion as you work through the problems.
These activities, like recitation, are meant to get you to review what we’ve learned, look at problems from
a different perspective and allow you to ask questions about topics you don’t understand. We encourage
discussing problems with your neighbors as you work through this lab!

Grading: You should finish (1.a), (1.b), and (1.c) for two points. You should complete any two
additional problems for three points: we recommend starting with (1.d).

Finding collisions in hash functions
Partial ASCII Table

32 20 ␣ 64 40 @ 96 60 ‘
33 21 ! 65 41 A 97 61 a
34 22 " 66 42 B 98 62 b
35 23 # 67 43 C 99 63 c
36 24 $ 68 44 D 100 64 d
37 25 % 69 45 E 101 65 e
38 26 & 70 46 F 102 66 f
39 27 ’ 71 47 G 103 67 g
40 28 ( 72 48 H 104 68 h
41 29 ) 73 49 I 105 69 i
42 2A * 74 4A J 106 6A j
43 2B + 75 4B K 107 6B k
44 2C , 76 4C L 108 6C l
45 2D - 77 4D M 109 6D m
46 2E . 78 4E N 110 6E n
47 2F / 79 4F O 111 6F o
48 30 0 80 50 P 112 70 p
49 31 1 81 51 Q 113 71 q
50 32 2 82 52 R 114 72 r
51 33 3 83 53 S 115 73 s
52 34 4 84 54 T 116 74 t
53 35 5 85 55 U 117 75 u
54 36 6 86 56 V 118 76 v
55 37 7 87 57 W 119 77 w
56 38 8 88 58 X 120 78 x
57 39 9 89 59 Y 121 79 y
58 3A : 90 5A Z 122 7A z
59 3B ; 91 5B [ 123 7B {
60 3C < 92 5C \ 124 7C |
61 3D = 93 5D ] 125 7D }
62 3E > 94 5E ^ 126 7E ∼
63 3F ? 95 5F _

Recall that a hash function h(k) takes a key k as its argument
and returns some integer, a hash value; we can then calculate
abs(h(k)%m) to get an index into our hash table. In this lab
you will be examining various hash functions and exploiting
their inefficiencies to make them collide.

Let string s of length n (n > 0) be denoted as
s0s1s2...sn−2sn−1, where si is the ASCII value of character
i in string s. (A partial ASCII table is given to the right.) We
define five hash functions as follows:

hash_len: h(s) = n

hash_add: h(s) = s0 + s1 + s2 + · · ·+ sn−2 + sn−1

hash_mul32:

h(s) = (. . . ((s0 ∗32+s1)∗32+s2)∗32 · · ·+sn−2)∗32+sn−1

hash_mul31:

h(s) = (. . . ((s0 ∗31+s1)∗31+s2)∗31 · · ·+sn−2)∗31+sn−1

hash_lcg:

h(s) = f(f(. . . f(f(f(s0) + s1) + s2) · · ·+ sn−2) + sn−1)

where f(x) = 1664525 ∗ x+ 1013904223

These five hash functions have been implemented for you and
can be run from the command line:

% hash_len
Enter a string to hash: bar

hash value = 3
hashes to index 3 in a table of size 1024

Another? (empty line quits): snafu
hash value = 5
hashes to index 5 in a table of size 1024

Another? (empty line quits):

Note that the command line hashing tool also reports where the element with the given key will hash
given a table size of 1024. We care, however, about hash functions that always collide under a table of
any size. Thus, you’ll be looking for hash functions that hash to the same value.



The first exercise requires you to mathematically reverse-engineer one of the simpler hash functions:

(1.a) Find three or more strings, each string containing three or more characters, that would always
collide because they have the same hash value using hash_add.

Now, you’ll implement one of the hash functions and then use your implementation to find collisions
that always occur because the strings hash to the same value. The hash_mul31 function is slightly more
complicated – it’s actually the default string hashing function used in Java! It’s still possible to find hash
value collisions by doing some math with pen and paper, though.

(1.b) Implement your own version of hash_mul31 as a function that takes a single non-empty string as
its argument and returns an integer representing the hash value for that string using the formula
given on the previous page. Demonstrate that it works correctly by comparing the results of this
function in coin with the answers from the hash_mul31 binary. Your function does not need to
compute the hash index for a table of size 1024.

It should be very easy to cut-and-paste-and-modify this function to create your own implementation
of hash_lcg as well.

(1.c) Using your implementation of hash_mul31, find three or more strings, each containing three or
more characters, that do not have the same exact hash values but do collide in a hash table of size
1024.

The more complicated a hash function gets, the more you may need to rely on “brute force search” –
trying a lot of words and seeing which ones match.

(1.d) Using hash_lcg, find three or more strings, each containing three or more characters, that do not
have the same exact hash values but do collide in a hash table of size 1024.

(1.e) Only two words in the Scrabble dictionary have the same hash value under hash_lcg: “charmeuse”
and “historicizes”. (The hash value is 706668240.) Can you find two other strings with the same
hash value?

(1.f) The empty string has the hash value 0 under hash_lcg, and the closest any Scrabble dictionary
word comes to this hash value is “gristlier” (the hash value is -17760). Can you find a non-empty
string with a hash value closer to 0? If you find any that are closer than “gristlier”, submit it to
the course infrastructure (ask TA your about this) and you’ll be added to the scoreboard!

Our hash_lcg produces a hash value that is a 32-bit C0 integer. More complex hash functions produce
more bits: “SHA256” is a hashing algorithm that produces a 256-bit hash value, and “Skein 1024” is a
hash function that produces a 1024-bit hash value.

For a class of hash functions called cryptographic hash functions, brute force search is thought to be the
best known way to create collisions. If you’ve ever heard of “mining Bitcoins,” it largely involves using
brute-force search to solve problems like (1.f) for SHA256.


