
Lecture 5 Notes
Sorting Arrays

15-122: Principles of Imperative Computation (Spring 2016)
Frank Pfenning, Rob Simmons

1 Introduction

We begin this lecture by discussing how to compare running times of func-
tions in an abstract, mathematical way. The same underlying mathematics
can be used for other purposes, like comparing memory consumption or
the amount of parallelism permitted by an algorithm. We then use this
to take a first look at sorting algorithms, of which there are many. In this
lecture it will be selection sort because of its simplicity.

In terms of our learning goals, we will work on:

Computational Thinking: Still trying to understand how order can lead
to efficient computation. Worst-case asymptotic complexity of func-
tions.

Algorithms and Data Structures: In-place sorting of arrays in general, and
selection sort in particular. Big-O notation.

Programming: More examples of programming with arrays and algorithm
invariants.

2 Big-O Notation

In the design and analysis of algorithms, we try to make the running time
of functions mathematically precise by deriving so-called asymptotic com-
plexity measures for algorithms. In addition for wanting mathematical pre-
cision, there are two fundamental principles that guide our mathematical
analysis.

LECTURE NOTES

Sorting Arrays L5.2

1. We want an analysis that is practically useful. This has two conse-
quences.

First, we observe that the problems we care about are ones that get
harder as our inputs get bigger, so our definition of Big-O captures
the idea that we only care about the behavior of an algorithm on large
inputs, that is, when it takes a long time. It is when the inputs are
large that differences between algorithms become really pronounced.

Second, there is another mathematical concept, Big-Θ, which you can
read about on your own and which is frequently the concept that we
actually want to talk about in this class. But computer scientists defi-
nitely tend to think and talk and communicate in terms of Big-O no-
tation. We teach Big-O in part to help you communicate with other
computer scientists!

2. We want an analysis that is enduring. One consequence of this is that
we want our analysis to be the same even given computers that work
very different than the ones we use – in particular, ones that are much
faster than the ones we use.

The only way to handle this is to say that we don’t care about constant
factors in the mathematical analysis of how long it takes our program
to run. In practice, constant factors can make a big difference, but
they are influenced by so many factors (compiler, runtime system,
machine model, available memory, etc.) that at the abstract, mathe-
matical level a precise analysis is neither appropriate nor feasible.

Let’s see how these two fundamental principles guide us in the comparison
between functions that measure the running time of an algorithm.

Let’s say we have functions f and g that measure the number of oper-
ations of an algorithm as a function of the size of the input. For example
f(n) = 3 ∗ n measures the number of comparisons performed in linear
search for an array of size n, and g(n) = 3 ∗ log(n) measures the number of
comparisons performed in binary search for an array of size n.

The simplest form of comparison would be

g ≤0 f if for every n ≥ 0, g(n) ≤ f(n).

However, this violates principle (1) because we compare the values and g
and f on all possible inputs n.

We can refine this by saying that eventually, g will always be smaller
than or equal to f . We express “eventually” by requiring that there be a
number n0 such that g(n) ≤ f(n) for all n that are greater than n0.

LECTURE NOTES

Sorting Arrays L5.3

g ≤1 f if there is some n0 such that for every n ≥ n0 it is the case
that g(n) ≤ f(n).

This now incorporates the first principle (we only care about the func-
tion on large inputs), but constant factors still matter. For example, accord-
ing to the last definition we have 3 ∗ n ≤1 5 ∗ n but 5 ∗ n 6≤1 3 ∗ n. But if
constant factors don’t matter, then the two should be equivalent. We can
repair this by allowing the right-hand side to be multiplied by an arbitrary
constant.

g ≤2 f if there is a constant c > 0 and some n0 such that for
every n ≥ n0 we have g(n) ≤ c ∗ f(n).

This definition is now appropriate.
The less-or-equal symbol≤ is already overloaded with many meanings,

so we write instead:

g ∈ O(f) if there is a constant c > 0 and some n0 such that for
every n ≥ n0 we have g(n) ≤ c ∗ f(n).

This notation derives from the view of O(f) as a set of functions, namely
those that eventually are smaller than a constant times f .1 Just to be ex-
plicit, we also write out the definition of O(f) as a set of functions:

O(f) = {g | there are c > 0 and n0 s.t. for all n ≥ n0, g(n) ≤ c ∗ f(n)}

With this definition we can check that O(f(n)) = O(c ∗ f(n)).
When we characterize the running time of a function using big-O nota-

tion we refer to it as the asymptotic complexity of the function. Here, asymp-
totic refers to the fundamental principles listed above: we only care about
the function in the long run, and we ignore constant factors. Usually, we
use an analysis of the worst case among the inputs of a given size. Trying
to do average case analysis is much harder, because it depends on the distri-
bution of inputs. Since we often don’t know the distribution of inputs it is
much less clear whether an average case analysis may apply in a particular
use of an algorithm.

The asymptotic worst-case time complexity of linear search is O(n),
which we also refer to as linear time. The worst-case asymptotic time com-
plexity of binary search is O(log(n)), which we also refer to as logarithmic
time. Constant time is usually described as O(1), expressing that the running
time is independent of the size of the input.

1In textbooks and research papers you may sometimes see this written as g = O(f) but
that is questionable, comparing a function with a set of functions.

LECTURE NOTES

Sorting Arrays L5.4

Some brief fundamental facts about big-O. For any polynomial, only
the highest power of n matters, because it eventually comes to dominate the
function. For example, O(5∗n2+3∗n+83) = O(n2). Also O(log(n)) ⊆ O(n),
but O(n) 6⊆ O(log(n)).

That is the same as to say O(log(n)) (O(n), which means that O(log(n))
is a proper subset of O(n), that is, O(log(n)) is a subset (O(log(n)) ⊆ O(n)),
but they are not equal (O(log(n)) 6= O(n)). Logarithms to different (con-
stant) bases are asymptotically the same: O(log2(n)) = O(logb(n)) because
logb(n) = log2(n)/log2(b).

As a side note, it is mathematically correct to say the worst-case running
time of binary search is O(n), because log(n) ∈ O(n). It is, however, a
looser characterization than saying that the running time of binary search
is O(log(n)), which is also correct. Of course, it would be incorrect to say
that the running time is O(1). Generally, when we ask you to characterize
the worst-case running time of an algorithm we are asking for the tightest
bound in big-O notation.

There is nothing special about the variable n. We can use a different
variable, such as x, to say 4x + log9 x + 2 ∈ O(x), and we can generalize
to multiple variables to say that 2w + 2h2 + 4 ∈ O(w + h2). To formalize
this, we say that there is a single constant c, but we pick a different starting
point w0 and h0 for every variable.

3 Sorting Algorithms

We have seen in the last lecture that having a sort arrays can make it easier
to do search. This suggests that it may be important to be able to take an
unsorted an array and rearrange it so it’s sorted!

There are many different algorithms for sorting: bucket sort, bubble
sort, insertion sort, selection sort, heap sort, etc. This is testimony to the
importance and complexity of the problem, despite its apparent simplic-
ity. In this lecture we discuss selection sort, which is one of the simplest
algorithms.

LECTURE NOTES

Sorting Arrays L5.5

4 Selection Sort

Selection sort is based on the idea that on each iteration we select the small-
est element of the part of the array that has not yet been sorted and move it
to the end of the sorted part at the beginning of the array.

Let’s play this through for two steps on an example array. Initially, we
consider the whole array (from i = 0 to the end). We write this as A[0..n),
that is the segment of the array starting at 0 up to n, where n is excluded.

We now find the minimal element of the array segment under consid-
eration (2) and move it to the front of the array. What do we do with the
element that is there? We move it to the place where 2 was (namely at
A[4]). In other words, we swap the first element with the minimal element.
Swapping is a useful operation when sorting an array in place by modifying
it, because the result of a correct sort must be a permutation of the input.
If swapping is our only operation we are immediately guaranteed that the
result is a permutation of the input.

Now 2 is in the right place, and we find the smallest element in the
remaining array segment and move it to the beginning of the segment (i =
1).

LECTURE NOTES

Sorting Arrays L5.6

Let’s pause and see if we can write down properties of the variables and
array segments that allow us to write the code correctly. First we observe
rather straightforwardly that

0 ≤ i ≤ n

where i = n after the last iteration and i = 0 before the first iteration. Next
we observe that the elements to the left of i are already sorted.

A[0..i) sorted

These two invariants are true initially and suffice to imply the post-condition.
However, it won’t be possible to prove the correctness of selection sort be-
cause we can’t prove that these two invariants, on their own, are preserved
by every iteration of the loop. We also need to know that all elements to the
left of i are less or equal to all element to the right of i. We abbreviate this:

A[0..i) ≤ A[i..n)

saying that every element in the left segment is smaller than or equal to
every element in the right segment.

LECTURE NOTES

Sorting Arrays L5.7

We summarize the invariants

0 ≤ i ≤ n
A[0..i) sorted
A[0..i) ≤ A[i..n)

Let’s reason through without any code (for the moment), why these invari-
ants are preserved. Let’s look at the picture again.

In the next iteration we pick the minimal element among A[i..n), which
would be 12 = A[4]. We now swap this to i = 2 and increment i. We write
here i′ = i + 1 in order to distinguish the old value of i from the new one,
as we do in proofs of preservation of the loop invariant.

Since we only step when i < n, the bounds on i are preserved.
Why is A[0..i+1) sorted? We know by the third invariant that any ele-

ment in A[0..i) is less than any element in A[i..n) and in particular the one
we moved to A[i+1]. And A[0..i) was already sorted before by the second
invariant.

Why is A[0..i+1) ≤ A[i+1..n)? We know from the loop invariant before
the iteration that A[0..i) ≤ A[i+1..n). So it remains to show that A[i..i+1) ≤
A[i+1..n). But that is true since A[i] was a minimal element of A[i..n) which
is the same as saying that it is smaller or equal to all the elements in A[i..n)
and therefore also A[i+1..n) after we swap the old A[i] into its new position.

LECTURE NOTES

Sorting Arrays L5.8

5 Programming Selection Sort

From the above invariants and description of the algorithm, the correct
code is simple to write, including its invariants. The function does not
return a value, since it modifies the given array A, so it has declaration:

1 void sort(int[] A, int lo, int hi)
2 //@requires 0 <= lo && lo <= hi && hi <= \length(A);
3 //@ensures is_sorted(A, lo, hi);
4 ;

We encourage you to now write the function, using the following aux-
iliary and contract functions:

1. is_sorted(A, lo, hi) which is true if the array segment A[lo..hi)
is sorted.

2. le_seg(x, A, lo, hi)which is true if x ≤ A[lo1..hi1) (which means
all x is less than or equal to all elements in the array segment).

3. le_segs(A, lo1, hi1, lo2, hi2)which is true if A[lo1..hi1) ≤ A[lo2..hi2)
(which means all elements in the first segment are less or equal to the
all elements in the second array segment).

4. swap(A, i, j) modifies the array A by swapping A[i] with A[j]. Of
course, if i = j, the array remains unchanged.

5. find_min(A, lo, hi) which returns the index m of a minimal ele-
ment in the segment A[lo..hi).

Please write it and then compare it to our version on the next page.

LECTURE NOTES

Sorting Arrays L5.9

1 void sort(int[] A, int lo, int hi)
2 //@requires 0 <= lo && lo <= hi && hi <= \length(A);
3 //@ensures is_sorted(A, lo, hi);
4 {
5 for (int i = lo; i < hi; i++)
6 //@loop_invariant lo <= i && i <= hi;
7 //@loop_invariant is_sorted(A, lo, i);
8 //@loop_invariant le_segs(A, lo, i, A, i, hi);
9 {

10 int min = find_min(A, i, hi);
11 swap(A, i, min);
12 }
13 }

At this point, let us verify that the loop invariants are initially satisfied.

• lo ≤ i and i ≤ hi since i = lo and lo ≤ hi (by precondition (@requires)).

• A[lo..i) is sorted, since for i = lo the segment A[lo..lo) is empty (has
no elements) since the right bound is exclusive.

• A[lo..i) ≤ A[i..hi) is true since for i = lo the segment A[lo..lo) has no
elements. The other segment, A[lo..hi), is the whole part of the array
that is supposed to be sorted.

We should also verify the assertion we added in the loop body. It ex-
presses that A[m] is less or equal to any element in the segment A[i..hi),
abbreviated mathematically as A[m] ≤ A[i..hi). This should be implied by
the post-condition of the find_min function.

How can we prove the post-condition (@ensures) of the sorting func-
tion? By the loop invariant lo ≤ i ≤ hi and the negation of the loop con-
dition i ≥ hi we know i = hi . The second loop invariant then states that
A[lo..hi) is sorted, which is the post-condition.

LECTURE NOTES

Sorting Arrays L5.10

6 Auxiliary Functions

Besides the specification functions in contracts, we also used two auxiliary
functions: swap and find_min.

Here is the implementation of swap.

1 void swap(int[] A, int i, int j)
2 //@requires 0 <= i && i < \length(A);
3 //@requires 0 <= j && j < \length(A);
4 {
5 int tmp = A[i];
6 A[i] = A[j];
7 A[j] = tmp;
8 }

For find_min, we recommend you follow the method used for selection
sort: follow the algorithm for a couple of steps on a generic example, write
down the invariants in general terms, and then synthesize the simple code
and invariants from the result. What we have is below, for completeness.

1 int find_min(int[] A, int lo, int hi)
2 //@requires 0 <= lo && lo < hi && hi <= \length(A);
3 //@ensures lo <= \result && \result < hi;
4 //@ensures le_seg(A[\result], A, lo, hi);
5 {
6 int min = lo;
7 for (int i = lo+1; i < hi; i++)
8 //@loop_invariant lo <= i && i <= hi;
9 //@loop_invariant lo <= min && min < hi;

10 //@loop_invariant le_seg(A[min], A, lo, i);
11 {
12 if (A[i] < A[min]) {
13 min = i;
14 }
15 }
16

17 return min;
18 }

LECTURE NOTES

Sorting Arrays L5.11

7 Asymptotic Complexity Analysis

Previously, we have had to prove that functions actually terminate. Here
we do a more detailed argument: we do counting in order to give a big-O
classification of the number of operations. If we have an explicit bound on
the number of operations that, of course, implies termination.

Assume lo = 0 and hi = n for notational simplicity. The outer loop
iterates n times, from i = 0 to i = n − 1. Actually, we could stop one
iteration earlier, but that does not effect the asymptotic complexity, since it
only involves a constant number of additional operations.

For each iteration of the outer loop (identified by the value for i), we
do a linear search through the array segment to the right of i and then a
simple swap. The linear search will take n − i iterations, and cannot be
easily improved since the array segment A[i..n) is not (yet) sorted. So the
total number of iterations (counting the number of inner iterations for each
outer one)

n + (n− 1) + (n− 2) + · · ·+ 1 =
n(n + 1)

2

During each of these iterations, we only perform a constant amount of op-
erations (some comparisons, assignments, and increments), so, asymptoti-
cally, the running time can be estimated as

O(
n(n + 1)

2
) = O(

n2

2
+

n

2
) = O(n2)

The last equation follows since for a polynomial, as we remarked earlier,
only the degree matters.

We summarize this by saying that the worst-case running time of selec-
tion sort is quadratic. In this algorithm there isn’t a significant difference
between average case and worst case analysis: the number of iterations is
exactly the same, and we only save one or two assignments per iteration in
the loop body of the find_min function if the array is already sorted.

LECTURE NOTES

Sorting Arrays L5.12

8 Empirical Validation

If the running time is really O(n2) and not asymptotically faster, we predict
the following: for large inputs, its running time should be essentially cn2

for some constant c. If we double the size of the input to 2n, then the running
time should roughly become c(2n)2 = 4(cn2) which means the function
should take approximately 4 times as many seconds as before.

We try this with the function sort_time(n, r) which generates a ran-
dom array of size n and then sorts it r times. You can find the C0 code
as sort-time.c0 in this lecture’s code directory. We run this code several
times, with different parameters.

% cc0 selectsort.c0 sort-time.c0
% time ./a.out -n 1000 -r 100
Timing array of size 1000, 100 times
0
0.700u 0.001s 0:00.70 100.0% 0+0k 0+0io 0pf+0w
% time ./a.out -n 2000 -r 100
Timing array of size 2000, 100 times
0
2.700u 0.001s 0:02.70 100.0% 0+0k 0+0io 0pf+0w
% time ./a.out -n 4000 -r 100
Timing array of size 4000, 100 times
0
10.790u 0.002s 0:10.79 100.0% 0+0k 0+0io 0pf+0w
% time ./a.out -n 8000 -r 100
Timing array of size 8000, 100 times
0
42.796u 0.009s 0:42.80 99.9% 0+0k 0+0io 0pf+0w
%

Calculating the ratios of successive running times, we obtain

n Time Ratio
1000 0.700
2000 2.700 3.85
4000 10.790 4.00
8000 42.796 3.97

We see that especially for the larger numbers, the ratio is almost exactly 4
when doubling the size of the input. Our conjecture of quadratic asymp-
totic running time has been experimentally confirmed.

LECTURE NOTES

	Introduction
	Big-O Notation
	Sorting Algorithms
	Selection Sort
	Programming Selection Sort
	Auxiliary Functions
	Asymptotic Complexity Analysis
	Empirical Validation

