Lecture 11 Notes
Unbounded Arrays

15-122: Principles of Imperative Computation (Spring 2016)
Rob Simmons, Frank Pfenning

1 Introduction

Arrays have efficient O(1) access to elements given an index, but their size
is set at allocation time. This makes storing an unknown number elements
problematic: if the size is too small we may run out of places to put them,
and if it is too large we will waste memory. Linked lists do not this problem
at all since they are extensible, but accessing an element is O(1). In this lec-
ture, we introduce unbounded arrays, which like lists can hold an arbitrary
number of elements, but also allow these element to be retrieved in O(1)
time? What gives? Adding (and removing) an element to the unbounded
array has cost either O(1) or O(n), but in the long run the average cost of
each such operation is constant — the challenge will be to prove this last
statement!
This maps to our learning gaols as follows

Programming: We introduce unbounded arrays and operations on them.

Algorithms and Data Structures: Analyzing them requires amortized anal-
ysis, a particular way to reason about sequences of operations on data
structures.

Computational Thinking: We also briefly talk again about data structure
invariants and interfaces, which are crucial computational thinking con-
cepts.

But first, let’s introduce the idea of amortized analysis on a simpler exam-
ple.
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2 The k-bit Counter

A simple example we use to illustrate amortized analysis is the idea of a
binary counter that we increment by one at a time. If we have to flip each bit
individually, flipping k bits takes O(k) time.

000000 000001 000010 000011 000100 000101 000110 000111 001000

\/7 \7 \ 7\ \ 77\ \7s v

Flips: 1 2 1 3 1 2 1 4

Obviously, if we have a k-bit counter, the worst case running time of an
single increment operation is O(k). But does it follow that the worst case
running time of n operations is O(kn)? Not necessarily. Let’s look more
carefully at the cases where the operation we have to perform is the most
expensive operation we've yet considered:

000000 000001 000010 000011 000100 000101 000110 000111 001000

\7 \ 7 N7 \72 \ 7\ \7 v
3 1 2

Flips: 1 2 1 1 4
Total cost: 1 3 4 7 8 10 11 15
Total steps: 1 2 3 4 5 6 7 8

We can observe two things informally. First, the most expensive operations
get further and further apart as time goes on. Second, whenever we reach a
most-expensive-so-far operation at step n, the total cost of all the operations
up to and including that operation is 2n — 1. Can we extend this reasoning
to say that the total cost of performing n operations will never exceed 2n?

One metaphor we frequently use when doing this kind of analysis is
banking. It’s difficult to think in terms of savings accounts full of microsec-
onds, so when we use this metaphor we usually talk about tokens, repre-
senting an abstract notion of cost. With a token, we can pay for the cost
of a particular operation; in this case, the constant-time operation of flip-
ping a bit. If we reserve (or budget) two tokens every time we perform any
increment, putting any excess into a savings account, then we see that after
the expensive operations we’ve looked out, our savings account contains 1
token. Our savings account appears to never run out of money.
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000000 000001 000010 000011 000100 000101 000110 000111 001000

\7 \7 N\ \7 \ 7\ \7 v
3 4 7

Total cost: 1 8 10 11 15
2 x #steps: 2 4 6 8 10 12 14 16
Savings: 1 1 2 1 2 2 3 1

This is good evidence, but it still isn’t a proof. To offer something like a
proof, as always, we need to talk in terms of invariants. And we can see a
very useful invariant: the number of 1 bits always matches the number in
our savings account! This observation leads us to the last trick that we’ll
use when we perform amortized analysis in this class: we associate one
token with each 1 in the counter as part of our data structure invariant.

3 Amortized Analysis With Data Structure Invariants

Whenever we increment the counter, we’ll always flip some number (maybe
zero) of lower-order 1s to 0, and then we’ll flip a single 0 to 1 (unless we're
out of bits in the counter). No matter how many lower-order 1 bits there
are, the flipping of those low-order bits is paid for by the tokens associated
with those bits. Then, because we’re always gaining 2 tokens whenever we
perform an increment, one of those tokens can be used to flip the lowest-
order 0 to a 1 and the other one can be associated with that new 1 in order
to make sure the data structure invariant is preserved. Graphically, any
time we increment the counter, it looks like this:

-03%..3% ..000..00 ..100..00 ...600...00

©c B B, B

use stored tokens use one new token store the second new token
toflip 1sto Os toflipaOtoal alongside the new 1, as required

(Well, not every time: if the counter is limited to & bits and they’re all 1, then
we’ll flip all the bits to 0. In this case, we can just throw away or lose track
of our two new tokens, because we can restore the data structure invariant
without needing the two new tokens. In the accounting or banking view,
when this happens we observe that our savings account now has some
extra savings that we’ll never need.)

Now that we’ve rephrased our operational argument about the amount
of savings as a data structure invariant that is always preserved by the in-
crement operation, we can securely say that, each time we increment the
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counter, it suffices to reserve exactly two tokens. This means that a series
of n increments of the k-bit counter, starting when the counter is all zeroes,
will take time in O(n). We can also say that each individual operation has
an amortized running time of 2 bitflips, which means that the amortized cost
of each operation is in O(1). It’s not at all contradictory for bitflips to have
an amortized running time in O(1) and a worst-case running time in O(k).

In summary: to talk about amortized running time (or, more generally,
the amortized cost) of operations on a data structure, we:

1. Invent a notion of tokens that stand in for the resource that we’re in-
terested in (usually time — in our example, a token is spent each time
a bit is flipped);

2. Specify, for any instance of the data structure, how many tokens need
to be held in reserve as part of the data structure invariant (in our
example, one token for each 1-bit);

3. Assign, for each operation we might perform on the data structure,
an amortized cost in tokens (in our example, two tokens for each in-
crement);

4. Prove that, for any operation we might perform on the data structure,
the amortized cost plus the tokens held in reserve as part of the data
structure invariant suffices to restore the data structure invariant.

This analysis proves that, for any sequence of operations on a data structure,
the cumulative cost of that sequence of operations will be less than or equal
to the sum of the amortized cost of those operations. Even if some of the
operations in that sequence have high cost (take a long time to run), that
will be at least paid for by other operations that have low cost (take a short
time to run).

This form of amortized analysis is sometimes called the potential method.
It is a powerful mathematical technique, but we’ll only use it for relatively
simple examples in this class.

4 What amortized analysis means

Tokens aren’t real things, of course! They are stand-ins for the actual re-
sources we're interested in. Usually, the resource we are concerned about
is time, so we match up tokens to the (frequently constant-time) operations
we have to do on our data structure. In the counter example, we might be
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storing the counter as an array of bool values, in which case it would take
a constant-time array write to flip one of the bits in the counter. (Tokens
will also correspond to array writes in the unbounded array example we
consider next.)

We do amortized analysis in order to prove that the inexpensive opera-
tions early on suffice to pay for any expensive operations that happen later.
There’s no uncertainty with amortized analysis: we know that, if we calcu-
late our overall time as if each increment costs two bit flips, we will never
underestimate the total cost of our computation.

Budgeted by amortized analysis

(2 flips per increment) N

# of total bit flips

Actual number
(will never be
bigger than
budget)

# of times the counter has been incremented

This is different than average case analysis for quicksort, where we
know that sometimes the total cost of sorting could be higher than pre-
dicted (if we get unlucky in our random pivot selection). There’s no luck
in our amortized analysis: we know that the total cost of n increments is
in O(n), even though the worst case cost of a single increment operation is
O(k) bit flips.

5 Unbounded Arrays

In the second homework assignment, you were asked to read in some files
such as the Collected Works of Shakespeare, the Scrabble Players Dictionary, or
anonymous tweets collected from Twitter. What kind of data structure do
we want to use when we read the file? In later parts of the assignment we
want to look up words, perhaps sort them, so it is natural to want to use an
array of strings, each string constituting a word. A problem is that before
we start reading we don’t know how many words there will be in the file
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so we cannot allocate an array of the right size! One solution uses either a
queue or a stack.

The array interface that we discussed before doesn’t seem like it would
work, because it requires us to bound the size of the array — to know in
advance how much data we’ll need to store:

// typedef ______ * arr_t;
typedef struct arr_headerx arr_t;

int arr_len(arr_t A)
/*@requires A !'= NULL; @x/;

arr_t arr_new(int size)
/*@requires 0 <= size; @x/
/*@ensures \result !'= NULL; @x/
/*@ensures arr_len(\result) == size; @x/;

string arr_get(arr_t A, int i)
/*@requires A !'= NULL; @x/
/*@requires 0 <= i && i < arr_len(A); @x/;

void arr_set(arr_t A, int i, string x)
/*@requires A !'= NULL; @x/
/*@requires 0 <= i && i < arr_len(A); @+/;

It would work, however, if we had an extended interface of unbounded ar-
rays, where the arr_add (A, x) function increases the array’s size to add x
to the end of the array. There’s a complementary operation, arr_rem(A),
that decreases the array’s size by 1.
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void arr_add(arr A, string x)
/*@requires A !'= NULL; @*/;

string arr_rem(arr A)
/*@requires A !'= NULL; @x/
/*@requires 0 < arr_len(A); @+/;

We’d like to give all the operations in this extended array interface a run-
ning time in O(1).! It’s not practical to give arr_add(A,x) a worst case
running time in O(1), but with a careful implementation we can show that
is possible to give the function an amortized running time in O(1).

6 Implementing Unbounded Arrays

Our original implementation of an interface for C0 arrays had a struct with
two fields: the data field, an actual array of strings, and a limit field,
which contained the length of the array. This limit was what we returned
to the users when they asked for the length of the array.

While it wouldn’t work to have a limit that was less than the array
length we are reporting to the user, we can certainly have an array limit
that is greater: we’ll store the potentially smaller number that we report in
the size field.

typedef struct arr_header arr;
struct arr_header {

int size; /x 0 <= size && size < limit =/
int limit; /*x 0 < limit =/
string[] data; /* \length(data) == limit %/

}

int arr_len(arrx A)
//@requires is_arr(A);
//@ensures 0 <= \result & \result <= \length(A->data);
{
return A->size;

}

'It's questionable at best whether we should think about @rr_new being O(1), because
we have to allocate O(n) space to get an array of length n and initialize all that space to
default values. The operating system has enough tricks to get this cost down, however, that
we usually think of array allocation as a constant-time operation.
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If we reserve enough extra room, then most of the time when we need to
use arr_add to append a new item onto the end of the array, we can do
it by just incrementing the size field and putting the new element into an
already-allocated cell in the data array.

size limit  data
e [s [ ]
- Z

@arr_add(A, “d)

size limit  data

—fe Is 1]
e e <

A
all] 00O

The images to the left above represent how the data structure is actually
stored in memory, and the images in the thought bubbles to the right rep-
resent how the client of our array library can think about the data structure
after an arr_add operation.

The data structure invariant sketched out in comments above can be
turned into an is_arr function like this:

an

3 llbll

«| brl llcll lld ”

bool is_arr_expected_length(string[] A, int limit) {
//@assert \length(A) == limit;
return true;

}

bool is_arr(arrx A) {
return A != NULL
&& is_arr_expected_length(A->data, A->limit)
&& 0 <= A->size && A->size < A->limit;

}

Because we require that the size be strictly less than the limit, we can always
implement arr_add by storing the new string in A->data[A->size] and
then incrementing the size. But after incrementing the size, we might vio-
late the data structure invariant! We'll use a helper function, arr_resize,
to resize the array in this case.
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void arr_add(arrx A, string x)
//@requires is_arr(A);
//@ensures is_arr(A);
{
A->data[A->size] = Xx;
(A->size)++;
arr_resize(A);

}

The arr_resize() function works by allocating a new array, copying the
old array’s contents into the new array, and replacing A->data with the
address of the newly allocated array.

void arr_resize(arrx A)
//@requires A != NULL && \length(A->data) == A->limit;
//@requires 0 < A->size && A->size <= A->limit;
//@ensures is_arr(A);
{
if (A->size == A->1limit) {
assert(A->limit < int_max() / 2); // Can’t handle bigger
A->limit = A->size x 2;
} else {
return;

}

//@assert 0 <= A->size && A->size < A->limit;
string[] B = alloc_array(string, A->limit);

for (int i = 0; i < A->size; i++)
//@loop_invariant 0 <= i && 1 <= A->size;

{

B[i] = A->datalil;
}
A->data = B;

}

The assertion assert (A->1imit < int_max() / 2) isthere because, with-
out it, we have to worry that doubling the limit in the next line might over-
flow. Hard asserts like this allow us to safely detect unlikely failures that
we can’t exclude with contracts but that we don’t want to encode into our
interface.
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7 Amortized Analysis for Unbounded Arrays

Doubling the size of the array whenever we resize it allows us to give an
amortized analysis concluding that every arr_add operation has an amor-
tized cost of three array writes. Because array writes are our primary notion
of cost, we say that one token allows us to write to an array one time.

Here’s how the analysis works: our data structure invariant for tokens is
that, whenever we are using a cell in the second half of the array, we need
to store two tokens alongside that cell. Then we assign an amortized cost of
three tokens to the add operation. Every call to arr_add uses one token to
write an element into the array; if that new element is in the second half
of the array, we store two tokens alongside that newly-in-use cell. Thus,
budgeting three tokens for each arr_add operation suffices to preserve the
data structure invariant in every case that doesn’t cause the array to become
totally full.

size limit data
4 s [ ]
Ila” llb" IIC" n ’>Q><|
al ']
@arr_add(A,”e’)
size limit data
—fs o [ ]
Ilall llb" llcll n ell

Al

In the cases where the addition does completely fill the array, we need to
copy over every element in the old array into a new, larger array in order to
preserve the A->size < A->1imit data structure invariant. This requires
one write for every element in the old array. We can pay for each one of
those writes because we have two stored tokens in exactly half of the old
array — which is the same as having one token for each cell in the old array.
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size limit  data
16 _ls [ |
na" nb" ncu ” 4 ”
all]
arr_resize(A)
size limit  data
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After the resize, exactly half the array is full, so our data structure invariant
for tokens doesn’t require us to have any tokens in reserve. This means that
the data structure invariant is preserved in this case as well.

This establishes that the amortized cost of arr_add is three array writes.
We do things that aren’t array writes in the process of doing arr_add, but
the cost is dominated by array writes, so this gives the right big-O notion
of (amortized) cost.

8 Shrinking the array

In the example above, we only re-sized our array to make it bigger. We
could also call arr_resize(A) in our arr_rem function, and allow that
function to make the array either bigger or smaller.

string arr_rem(arrx A)
//@requires is_arr(A);
//@requires 0 < arr_len(A);
//@ensures is_arr(A);
{

(A->size)--;

string x = A->data[A->sizel;

arr_resize(A);

return x;

}

If we want arr_rem to take amortized constant time, it will not work to
resize the array as soon as A is less than half full. An array that is exactly half
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full doesn’t have any tokens in reserve, so it wouldn’t be possible to pay
for halving the size of the array in this case. In order to make the constant-
time amortized cost work, the easiest thing to do is only resize the array
when it is less than one-quarter full. If we make this change, it’s possible
to reflect it in the data structure invariant, requiring that A->size be in the
range [A->1imit/4, A->1imit) rather than the range [0, A->1imit) that we
required before.

In order to show that this deletion operation has the correct amortized
cost, we must extend our data structure invariant to also store tokens for
every unused cell in the left half of the array. (See the exercises below.)
Once we do so, we can conclude that any valid sequence of n operations
(arr_add or arr_rem) that we perform on an unbounded array will take
time in O(n), even if any single one of those operations might take time
proportional to the current length of the array.
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Exercises

Exercise 1. If we only add to an unbounded array, then we’ll never have less than
half of the array full. If we want arr_rem to be able to make the array smaller,
we’ll need to reserve tokens when the array is less than half full, not just when the
array is more than half full. What is the precise data structure invariant we need?
How many tokens (at minimum) do we need to per arr_rem operation in order
to preserve it? What is the resulting amortized cost (in terms of array writes) of
arr_rem?

Exercise 2. If we also said that we required n tokens to allocate an array of size
n, then the arr_new function would obviously have a cost (amortized and worst-
case) of 2n € O(n). How many tokens would we need to budget for each arr_add
and arr_rem operation in order to prove that these operations require an amortized
constant number of tokens?

Exercise 3. How would our amortized analysis change if we increased the size of
the array by 50% instead of 100%? What if we increased it by 300%? You are
allowed to have a cost in fractions of a token.

Exercise 4. When removing elements from the unbounded array we resize if the
limit grossly exceeds its size. Namely when L->size < L->1imit/4. Your first
instinct might have been to already shrink the array when L->size < L->1imit/2.
We have arqued by example why that does not give us constant amortized cost
O(n) for a sequence of n operations. We have also sketched an argument why
L->size < L->1imit/4 gives the right amortized cost. At which step in that
argument would you notice that L->size < L->1imit/2 is the wrong choice?
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