Lecture 13 Notes
Sets

15-122: Principles of Imperative Computation (Spring 2016)
Frank Pfenning, Rob Simmons

1 Introduction

In this lecture, we will discuss the data structure of hash tables further and
use hash tables to implement a very basic interface of sets. With this lecture,
we will also begin to discuss a new separation of concerns. Previously, we
have talked a great deal about the distinction between a library’s interface
(which the client can rely on) and a library’s implementation (which should
be able to change without affecting a correctly-designed client).

The interface defines not only the types, but also the available operations
on them and the pre- and post-conditions for these operations. For general
data structures it is also useful to note the asymptotic complexity of the
operations so that potential clients can decide if the interface serves their
purpose.

One wrinkle we have not yet discussed is that, in order for a library to
provide its services, it may in turn require some operations provided by
the client. Hash tables provide an excellent example for this complication,
so we will discuss the interface to hash tables in details before giving the
hash table implementation.

For the purposes of this lecture we call the data structures and the op-
erations on them provided by an implementation the library and code that
uses the library the client.

Relating to our learning goals, we have

Computational Thinking: We discuss the separation of client interfaces
and client implementations.

Algorithms and Data Structures: We discuss algorithms for hashing strings.
Programming: We revisit the char data type and use it to consider string

hashing.

LECTURE NOTES

Sets L13.2

2 Generic Data Structures

So far, all the data structures that we’ve considered, have always had par-
ticular type information that seemed irrelevant. In the implementation of
queues, why is it important that we have a queue of strings in particular?

// typedef ______ * queue_t;

bool queue_empty(queue_t Q) /x 0(1) */
/*@requires Q != NULL; @x/;

queue_t queue_new() /* 0(1) */
/*@ensures \result != NULL; @*/;

void enq(queue_t Q, string x) /x 0(1) */
/*@requires Q !'= NULL; @x/;

string deqg(queue_t S) /% 0(1) */
/*@requires Q !'= NULL && !'queue_empty(S); @x/ ;

It’s both wasteful and a potential source of errors to have to rewrite our
code if we want our program to use integers (or chars, or pointers to structs,
or arrays of strings, ...) instead of strings. A way we deal with this is by
creating a type, elem, that is used by the library but not defined in the
library:

/*x*x Client interface *xx/
// typedef _______ elem;

/**x Library interface xxx/

// typedef ______ * queue_t;

bool queue_empty(queue_t Q) /x 0(1) */
/*@requires Q != NULL; @x/;

queue_t queue_new() /*x 0(1) */
/*@ensures \result != NULL; @*/;

void enq(queue_t Q, elem Xx) /* 0(1l) *x/
/*@requires Q '= NULL; @/;

elem deq(queue_t Q) /x 0(1) */
/*@requires Q != NULL && !'queue_empty(S); @/ ;

The underscores in the library interface, before queue_t, mean that the
client doesn’t know how the abstract type queue_t is implemented be-
yond knowing that it is a pointer. The underscores in the library interface,
before queue_t, mean that the client doesn’t know how the abstract type
queue_t is implemented. The library is therefore free to change this and
that the library is free to change this implementation without breaking any

LECTURE NOTES

Sets L13.3

(interface-respecting) client code. The underscores in the client interface
mean that the library doesn’t know how the abstract type elem is imple-
mented, which means that the client is free to change this implementation
without breaking the library. The library’s implementation just refers to the
elem type, which it expects the client to have already defined, whenever it
needs to refer to client data.

This approach is still not perfect, because any given program only sup-
ports a single type of queue element. We’ll start working on that problem
in the next lecture.

3 Generic Hash Sets

When we implement the set interface with a hash table, we'll call it a hash
set or hset. When we implement the dictionary interface with a hash table,
we'll call it a hash dictionary or hdict. Our hash set implementation will be
generic; it will work regardless of the type of keys or elements to be stored
in the table.

We need to think carefully about which types and functions are pro-
vided by the client of the hash set, and which are provided by the library
itself. Clearly, the library should determine the type of hash sets:

/* library side types x/
// typedef ______ * hset_t;

That is really the only type provided by the implementation. In addition,
the library interface is supposed to provide a few functions:

/* library side functions x/

hset_t hset_new(int capacity) /x 0(1) x*/
/*@requires capacity > 0; @/
/*@ensures \result !'= NULL; @x/ ;

bool hset_contains(hset_t H, elem x) /* 0(1) avg. */
/*@requires H !'= NULL; @/ ;

void hset_add(hset_t H, elem x) /% 0(1) avg. */
/*@requires H !'= NULL; @x/
/*@ensures hset_contains(H, x); @/ ;

The function hset_new(int capacity) takes the initial capacity of the
hash table as an argument (which must be strictly positive) and returns
a new hash set without any elements.

LECTURE NOTES

Sets L13.4

The function hset_contains(hset_t H, elem x) answers the ques-
tion of whether the element x has been added to the set already. The last
function, hset_add(hset_t H, elem x), ensures that x is now in the set.

From these decisions we can see that the client must provide the type of
elements. Only the client can know what these might be in any particular
use of the library. In this implementation, we don’t need to know anything
about the type elem, which we indicate by using only underscores:

/* client-side types x/
// typedef _______ elem;

Does the client also need to provide any functions? Yes! The hash ta-
ble implementation needs functions that can operate on values of the types
elem so that it can hash elements and so that it can determine whether they
are equal. Since the library is supposed to be generic, the library imple-
menter cannot write these functions; we require the client to provide them.

There are two of these “client-side” functions. First, and most obvi-
ously, we need a hash function which maps keys to integers.

/* client-side functions x/
int elem_hash(elem x);

The result, the hash value, can be any integer, so our hash table implementa-
tion will have to take both this arbitrary integer and m, the size of the hash
table’s table, into consideration when figuring out which index of the ta-
ble the element hashes to. For the hash table implementation to achieve its
advertised (average-case) asymptotic complexity, the hash function should
have the property that its results are evenly distributed between 0 and m.
The hash set implementation will work correctly (albeit slowly) even if it
maps every key to 0.

Hash table operations also need to be able to check for the equality of
elements in order to be able to tell whether two objects that collide are ac-
tually the same or not.

/* client-side functions x/
bool elem_equiv(elem x, elem y);

This completes the interface which we now summarize.

LECTURE NOTES

Sets

L13.5

/3% 3k sk sk sk sk sk ok ok ok ok ok ok ok ok ok sk ok ok ok ok k ok ok /

/**x*x Client interface x*xx/

/3% 3k sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok k ok k /

// typedef ___ * elem;

bool elem_equiv(elem x, elem y);
int elem_hash(elem x);

[/ 3% 3k sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok /
/**x Library interface #*xx/
/3% 3k sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok /

// typedef ______ * hset_t;

hset_t hset_new(int capacity)
/*@requires capacity > 0; @x/
/*@ensures \result != NULL; @/ ;

elem hset_contains(hset_t H, elem x)
/*@requires H !'= NULL; @x/ ;

void hset_add(hset_t H, elem x)
/*@requires H !'= NULL; @/

/*@ensures hset_contains(H, x); @x/ ;

LECTURE NOTES

10

11

12

13

14

15

16

17

18

19

20

21

Sets L13.6

4 A Tiny Client

One sample application is to count word occurrences — say, in a corpus of
Twitter data or in the collected works of Shakespeare. In this application,
the keys are the words, represented as strings. Data elements are pairs of
words and word counts, the latter represented as integers.

/******************************/
/* client-side implementation x/
/******************************/
struct wcount {

string word;

int count;

b
typedef struct wcountx elem;

int elem_hash(elem x)
//@requires x !'= NULL;
{

return hash_string(x->word); /* from hash-string.cO */

}

bool elem_equiv(elem x1, elem x2)
//@requires x1 !'= NULL && x2 != NULL;
{

return string_equiv(xl->word, x2->word);

}

5 A Universal Hash Function

One question we have to answer is how to hash strings, that is, how to map
strings to integers so that the integers are evenly distributed no matter how
the input strings are distributed.

We can get access to the individual characters in a string with the func-
tion string_charat(s, i), and we can get the integer ASCII value of a
char with the function char_ord(c); both of these are defined in the C0O
string library. Therefore, our general picture of hashing strings looks like
this:

LECTURE NOTES

Sets

L13.7

2 int hash_string(string s) {
int len = string_length(s);
int h = 0;

for (int i = 0; i < len; i++)
//@loop_invariant 0 <= i;

24

25

26

27

28

29

33

26

27

28

29

31

{
int
//
}

ch = char_ord(string_charat(s, 1i));
Do something to combine h and ch

return h;

}

Now, if

we don’t add anything to replace the comment, the function above

will still allow the hash table to work correctly, it will just be very slow

because the hash value of every string will be zero.

A slightly better idea is combining h and ch with addition or multipli-

cation:

for (int i = 0; i < len; i++)
//@loop_invariant 0 <= i;

{
int
h =
}

ch = char_ord(string_charat(s, 1i));
h + ch;

This is still pretty bad, however. We can see how bad by running entering

then =
m = 22

Hash t
..0:

O oo NOUL A~ WN -

Longes

45,600 news vocabulary words from Homework 2 into a table with
, 800 chains (load factor is 2) and running ht_stats:

able distribution: how many chains have size...
21217

1 239

132

: 78
: 73
: 55
: 60
: 46
1 42
..9: 23
.10+:

835
t chain: 176

LECTURE NOTES

26

27

28

29

30

31

32

26

Sets L13.8

Most of the chains are empty, and many of the chains are very, very long.
One problem is that most strings are likely to have very small hash values
when we use this hash function. An even bigger problem is that rearrang-
ing the letters in a string will always produce another string with the same
hash value — so we know that "cab" and "abc" will always collide in a
hash table. Hash collisions are inevitable, but when we can easily predict
that two strings have the same hash value, we should be suspicious that
something is wrong.

To address this, we can manipulate the value h in some way before we
combine it with the current value. Some versions of Java use this as their
default string hashing function.

for (int i = 0; i < len; i++)
//@loop_invariant 0 <= i;

{
int ch = char_ord(string_charat(s, i));
h = 31xh;
h =h + ch;

}

This does much better when we add all the news vocabulary strings into
the hash table:

Hash table distribution: how many chains have size...
..0: 3057

1 6210

: 6139

: 4084

: 2151

: 809

1 271

: 53

1 21

1 4

coa10+: 1

Longest chain: 10

O oo NOUL A~ WN -

We can try adding a bit of randomness into this function in a number
of different ways. For instance, instead of multiplying by 31, we could
multiply by a number generated by the pseudo-random number generator
from C0’s library:

rand_t r = init_rand(0x1337BEEF);

LECTURE NOTES

26

28

29

30

31

32

Sets L13.9

for (int i = 0; i < len; i++)
//@loop_invariant 0 <= i;
{
int ch = char_ord(string_charat(s, i));
h = rand(r) = h;
h =h + ch;
}

If we look at the performance of this function, it is comparable to the Java
hash function, though it is not actually quite as good — more of the chains
are empty, and more are longer.

Hash table distribution: how many chains have size...
..0: 3796

1 6214

1 5424

: 3589

: 2101

1006

: 455

145

: 48

15

c 10+ 7

Longest chain: 11

O 0O NOoO UL~ WN B

Many other variants are possible; for instance, we could try directly
applying the linear congruential generator to the hash value at every step:

for (int i = 0; i < len; i++)
//@loop_invariant 0 <= i;
{
int ch = char_ord(string_charat(s, i));
h 1664525 x h + 1013904223;
h h + ch;
}

The key goals are that we want a hash function that is very quick to com-
pute and that nevertheless achieves good distribution across our hash ta-
ble. Handwritten hash functions often do not work well, which can signifi-
cantly affect the performance of the hash table. Whenever possible, the use
of randomness can help to avoid any systematic bias.

LECTURE NOTES

1

2

3

4

5

6

7

22

23

24

25

Sets L13.10

6 A Fixed-Size Implementation of Hash Tables

The implementation of hash tables we wrote in lecture did not adjust their
size. This requires that we can a priori predict a good size, or we will not
be able to get the advertised O(1) average time complexity. Choose the size
too large and it wastes space and slows the program down due to a lack of
locality. Choose the size too small and the load factor will be high, leading
to poor asymptotic (and practical) running time.

We start with the type of lists to represent the chains of elements, and
the hash table type itself.

/*******************************/
/* library-side implementation x*/
/*******************************/
struct chain_node {
elem data; /* data !'= NULL x/
struct chain_nodex next;
b

typedef struct chain_node chain;

struct hset_header {

int size; /* size >= 0 x/
int capacity; /* capacity > 0 x/
chainx[] table; /* \length(table) == capacity x/

}

The first thing after the definition of a data structure is a function to
verify its invariants. Besides the invariants noted above we should check
that each data value in each chain in the hash table should be non-null and
the hash value of the key of every element in each chain stored in A[7] is
indeed ¢. (This is_hset function is incomplete.)

bool is_hset(hset H) {
return H !'= NULL
&& H->capacity > 0
&& H->size >= 0
&& is_table_expected_length(H->table, H->capacity);
/* && each element is non-null =/
/* && there aren’t equal elements */
/* && the number of elements matches the size */
/*x && every element in H->table[i] hashes to i */

}

LECTURE NOTES

Sets L13.11

Recall that the test on the length of the array must be inside an annotation,
because the \length function is not available when the code is compiled
without dynamic checking enabled.

In order to check that the elements of a hash set hash to the correct
index, we need a way of mapping the hash value returned by elem_hash
to an index of the table. This is a common enough operation that we’ll write
a helper function:

7 int elemhash(hset H, elem x)

s //@requires H !'= NULL && H->capacity > 0;

2 //@requires x != NULL;

3 //@ensures 0 <= \result && \result < H->capacity;
a1 {

2 return abs(elem_hash(x) % H->capacity);

3 }
Allocating a hash table is straightforward.

5 hset hset_new(int capacity)

% //@requires capacity > 0;

37 //@ensures is_hset(\result);

3 {

s hset H = alloc(struct hset_header);

0 H->size = 0;

a H->capacity = capacity;

2 H->table = alloc_array(chainx, capacity);
13 return H;

4}

Equally straightforward is searching for an element with a given key. We
omit an additional loop invariant and add an assertion that should follow
from it instead.

16 bool hset_contains(hset H, elem x)

< //@requires is_hset(H);

s //@requires x '= NULL;

49{

50 int 1 = elemhash(H, x);

s for (chainx p = H->table[i]; p != NULL; p = p->next) {
5 if (elem_equiv(p->data, x)) return true;

53}
s« return false;
55 }

LECTURE NOTES

57

58

59

60

61

62

69

70

71

72

73

74

75

76

77

Sets L13.12

We can extract the key from the element 1->data because the data cannot
be null in a valid hash table. (Think: how would we phrase this as a loop
invariant?)

Inserting an element follows generally the same structure as search. If
we find an element in the correct chain with the same key we replace it. If
we find none, we insert a new node at the beginning of the chain.

void hset_insert(hset H, elem x)
//@requires is_hset(H);
//@requires x != NULL;
//@ensures is_hset(H);
//@ensures x == hset_contains(H, x);
{
int i = elemhash(H, x);
for (chainx p = H->table[i]; p != NULL; p = p->next)
{
if (elem_equiv(p->data, x)) {
p->data = Xx;
return;
}
}

// prepend new element
chainx p = alloc(chain);
p->data = x;

p->next = H->table[il];
H->table[i] = p;
(H->size)++;

LECTURE NOTES

Sets L13.13

Exercises

Exercise 1. Extend the hash table implementation so it dynamically resizes itself
when the load factor exceeds a certain threshold. When doubling the size of the
hash table you will need to explicitly insert every element from the old hash table
into the new one, because the result of hashing depends on the size of the hash table.

Exercise 2. Redo the library implementation for a different client interface that
has a function elem_hash(key k, int m) that returns a result between 0 (in-
clusive) and m (exclusive).

Exercise 3. Extend the hash table interface with a new function ht_tabulate
that returns an array with the elements in the hash table, in some arbitrary order.

Exercise 4. Extend the hash table interface with a new function to delete an ele-
ment with a given key from the table. To be extra ambitious, shrink the size of the
hash table once the load factor drops below some minimum, similarly to the way
we could grow and shrink unbounded arrays.

LECTURE NOTES

	Introduction
	Generic Data Structures
	Generic Hash Sets
	A Tiny Client
	A Universal Hash Function
	A Fixed-Size Implementation of Hash Tables

