
15-440: Distributed Systems

Zeinab Khalifa

Sept 12, 2019

Recitation 3

Outline

• Project 1 (Distributed File System)

• Entities, Architecture and Communication

• RMI

• Interfaces

• Skeleton & Stub

• Example

Project (1)
PS 2 is out!

Project 1

• Implement a Distributed File System (DFS)

• DFS stores a vast amount of data that does not fit on a single machine.

• Distributed files (physically) on a set of servers (storage servers)

• Users/Clients perform operations on the files stored on these remote servers using (RMI)

• Clients contact a naming server, which maps every file name to a storage server to identify the

storage server that hosts the file they require.

Entities, Architecture and
Communication

Entities

Client Storage Server Naming Server

Creates, reads, writes

files using RMI

Physically hosts the

files in its local file

system

• Runs at a predefined

address

• Maps file names to

storage servers

• It has metadata

Client-Server Architecture

• Client-server architecture

• 2, 3, 5: requests originating from clients to servers

• Naming server acts as a client in 2, when requesting the
services of storage servers.

• 1, 4, 6: services provided by the servers in response.

Storage

Server 2

Storage

Server n

1

Storage

Server 1

Naming

Server

2

Client

3

4

5

6

Communication

• Naming server – Storage server

• Registration phase: each Storage Server
sends a list of paths (representing the les that
it currently hosts) to the Naming Server

• The Naming Server traverses this list and
adds the paths to its directory

Storage

Server 2

Storage

Server n

1

Storage

Server 1

Naming

Server

2

Client

3

4

5

6

Communication

• Naming server – Storage server

• Registration phase: each Storage Server
sends a list of paths (representing the les that
it currently hosts) to the Naming Server

• The Naming Server traverses this list and
adds the paths to its directory

• During registration of Storage Server SS1, if
the Naming Server encounters f1.txt sent by
SS1 in its directory tree, then f1.txt is deemed
as a duplicate file. Storage

Server 2

Storage

Server n

1

Storage

Server 1

Naming

Server

2

Client

3

4

5

6

Communication

• Naming server – Storage server

• Registration phase: each Storage Server
sends a list of paths (representing the les that
it currently hosts) to the Naming Server

• The Naming Server traverses this list and
adds the paths to its directory

• During registration of Storage Server SS1, if
the Naming Server encounters f1.txt sent by
SS1 in its directory tree, then f1.txt is deemed
as a duplicate file.

• After registration, the system is now ready for
the client to invoke requests.

Storage

Server 2

Storage

Server n

1

Storage

Server 1

Naming

Server

2

Client

3

4

5

6

Communication

• Client – Naming Server

• Client contacts the naming server whenever
it needs to perform an operation on a file.

• Some requests (operations) cannot be
handled directly by the naming server, then
it replies back with the storage server that
hosts the file (read, write, etc.)

• Other operations can be directly handled by
the naming server (createFile,
createDirectory, list, etc.) Storage

Server 2

Storage

Server n

1

Storage

Server 1

Naming

Server

2

Client

3

4

5

6

RMI

RMI

• When a Client invokes a method, it basically invokes a remote method (and

hence, Remote Method Invocation)

• This is because the logic of the method resides on the server

• To perform this remote invocation, we need a library: Java RMI

• RMI allows the following:

• When the client invokes a request, it is not a aware of where it resides (local or remote). It

only knows the method’s name.

• When a server executes a method, it is oblivious to the fact that the method was initiated

by a remote client.

RMI

• The RMI library is based on two important objects:

• Stubs:

• When a client needs to perform an operation, it invokes the method

via an object called the “stub”

• If the operation is local, the stub just calls the helper function that

implements this operation’s logic

• If the operation is remote, the stub does the following:

• Sends (marshals) the method name and arguments to the

appropriate server (or skeleton),

• Receives the results (and unmarshals),

• Reports them back to the client.

RMI

• The RMI library is based on two important objects:

• Skeletons:

• These are counterparts of stubs and reside reversely at the

servers

• Therefore, each stub communicates with a corresponding skeleton

• It’s responsible for:

• Listening to multiple clients

• Unmarshalling requests (method name & method arguments)

• Processing the requests

• Marshalling & sending results to the corresponding stub

Interfaces

Interfaces

• Servers declare all their methods in interfaces

• Such interfaces contain a subset of the methods the server can
perform

Naming Server Interfaces

Naming

Server

Service

Interface

Implements

isDirectory

isFile

…

Registration

Interface

Implements

register

Storage Server Interfaces

Storage

Server

Storage

Interface

Implements

size
read
write

Command

Interface

Implements

create
delete

Creating Stubs & Skeletons

• For a client to create a Stub, it needs:

• An interface of the corresponding Skeleton

• Network address of the corresponding Skeleton

• For a server to create a Skeleton, it needs:

• An interface

• A class that implements the logic of the methods defined in the given interface

• Network address of the server

Naming Server Skeletons & Stubs

Naming

Server

Registration

Interface

Service

Interface

ImplementsImplements

Service

Skeleton

Registration

Skeleton

Storage Server Skeletons & Stubs

Storage

Server

Command

Interface

Storage

Interface

ImplementsImplements

Storage

Skeleton

Command

Skeleton

Storage

Stub

Command

Stub

Storage Server Skeletons & Stubs

Storage

Server

Command

Interface

Storage

Interface

ImplementsImplements

These stubs are sent to the Naming server
during registration

Simple Stub-Skeleton Communication

Naming

Server

Registrati

on

Interface

Service

InterfaceImplements

Creates

Service

Skeleton

Registratio

n Skeleton

Client
Service

Stub

Implements

Example

Full Example: Client Read
Client

Naming

Server

Storage

Server
Service

Stub

Service

Skeleton

Storage

Skeleton

T
IM

E

ServiceStub.getStorage(abc)

GetStorage(abc)

GetStorage(abc)

Storag

e Stub
Storag

e Stub

Storag

e Stub

StorageStub.

read(abc,0,10)

read(abc,0,10)

read(abc,0,10)

“HelloWorld”
“HelloWorld”

“HelloWorld”

Creating a Stub

• In Java, a stub is implemented as a dynamic proxy

• A proxy has an associated invocation handler

• Example: getStorage in Figure 2:
• When getStorage is invoked on the Service Stub, the proxy encodes the method name

(getStorage) and the argument(s) (file ‘abc’)
• The proxy sends the encoded data to the invocation handler
• The invocation handler determines if it is a local or remote procedure, and acts accordingly

(as how it was shown earlier)

• Go over java.lang.reflect.Proxy via the JavaDocs!

