
Carnegie Mellon University in Qatar

Distributed Systems

15-440 - Fall 2020

Problem Set 1

Out: August 27, 2020

Due: September 6, 2020

1

Problem I: Warm Up (40 Points)

Warm up with some critical concepts in Java Object Oriented and Multi-threading Pro-
gramming: Choose the correct answer(s). Explain and justify .

a.2pts Which of the following statements is correct for a method that overrides the following
method:

public void add(int a) { }

© The overriding method must return void

© The overriding method must return int

© The overriding method can return any type

b.2pts Which of the following statements is correct for a method that overloads the following
method:

public void add(int a) { }

© The overloading method must return void

© The overloading method can return any type

© The overloading method must take int a as a parameter

© The overloading method can take any parameters

Handout continues on the next page(s)

Page 2

c.2pts Given the following classes de�ned in separate �les, what is the e�ect of compiling and
running class Test?

class Vehicle {
public void drive() {

System.out.println("Vehicle : drive");
}

}

class Car extends Vehicle {
public void drive() {

System.out.println("Car: drive");
}

}

public class Test {
public static void main (String args []) {

Vehicle v;
Car c;
v = new Vehicle ();
c = new Car();
v.drive ();
c.drive ();
v = c;
v.drive ();

}
}

© Generates compile error at v = c

© Generates runtime error at v = c

© Prints: Vehicle : drive
Car: drive
Car: drive

© Prints: Vehicle : drive
Car: drive
Vehicle: drive

Handout continues on the next page(s)

Page 3

d.2pts What is wrong with the following code?

class MyException extends Exception { }

public class Q1d {

public void foo() {
try {

bar();
} finally {

baz();
} catch (MyException e) {}

}

public void bar() throws MyException {
throw new MyException ();

}

public void baz() throws RuntimeException {
throw new RuntimeException ();

}
}

© Since the method foo() does not catch the exception generated by the
method baz(), it must declare the RuntimeException in a throws clause

© A try block cannot be followed by both a catch and a �nally block

© An empty catch block is not allowed

© A catch block cannot follow a �nally block

© A �nally block must always follow one or more catch blocks

e.2pts What is the result of compiling and running the following code:

abstract class MineBase {
abstract void amethod ();
static int i;

}

public class Mine extends MineBase {
public static void main (String argv []) {

int[] arr = new int [5];

for (i = 0; i < arr.length; i++)
System.out.println(arr[i]);

}
}

© Prints a sequence of �ve zeros

© Generates runtime error since array arr has not been initialized

© Generates other error(s)

Page 4

f.2pts Which statement, when inserted at (1), will raise a runtime exception?

class A {}
class B extends A {}
class C extends A {}

public class Q1f {
public static void main (String [] args) {

A x = new A();
B y = new B();
C z = new C();

// (1) INSERT CODE HERE.
}

}

© x = y;

© z = x;

© y = (B) x;

© z = (C) y;

© y = (A) y;

g.2pts Which statement(s) are true about the following code?

class A {
public A() {}

public A(int i) { this(); }
}

class B extends A {
public boolean B(String msg) { return false; }

}

class C extends B {
private C() { super(); }
public C(String msg) { this(); }
public C(int i) {}

}

© The code will fail to compile

© The constructor in A that takes an int as an argument will never be called
as a result of constructing an object of class B or C

© Class C de�nes three constructors

© Objects of class B cannot be constructed

© At most one of the constructors of each class is called as a result of construct-
ing an object of class C

Page 5

h.2pts What are possible outputs of the given function?

public void divide(int a, int b) {
try {

int c = a / b;
} catch (Exception e) {

System.out.print("Exception");
} finally {

System.out.println("Finally");
}

}

© Finally

© Exception

© Exception Finally

© No Output

i.3pts Which type constraints, when inserted at (1), will allow the class to compile?

class Interval <___________ > { // (1) TYPE CONSTRAINT HERE
private N lower , upper;
public void update(N value) {
if (lower == null || value.compareTo(lower) < 0)

lower = value;
if (upper == null || value.compareTo(upper) > 0)

upper = value;
}

}

© N extends Object

© N extends Comparable<N>

© N extends Object & Comparable<N>

© N extends Number

© N extends Number & Comparable<N>

© N extends Comparable<N> & Number

© N extends Integer

© N extends Integer & Comparable<N>

Page 6

j.2pts Given the following interface declaration, which declaration is valid?

interface I {
void setValue (int val);
int getValue ();

}

© Option 1:

class A extends I {
int value;
void setValue(int val) { value = val; }
int getValue () { return value; }

}

© Option 2:

interface B extends I {
void increment ();

}

© Option 3:

abstract class C implements I {
int getVa1ue () { return 0; }
abstract void increment ();

}

© Option 4:

interface D implements I {
void increment () ;

}

© Option 5:

class E implements I {
int value;
public void setVa1ue(int val) { value = val; }

}

Page 7

k.3pts Which parameter declarations can be inserted at (1) so that the program compiles
without warning?

interface Wagger {}
class Pet implements Wagger {}
class Dog extends Pet { }
class Cat extends Pet { }
public class Q1k {

public static void main (String [] args) {
List <Pet > p = new ArrayList <Pet >();
List <Dog > d = new ArrayList <Dog >();
List <Cat > c = new ArrayList <Cat >();
examine(p);
examine(d);
examine(c);

}

static void examine(___________ pets) { // (1)
System.out.print("Your pets need urgent attention.");

}
}

© List<? extends Pet>

© List<? super Pet>

© List<? extends Wagger>

© List<? super Wagger>

© List<?>

© All of the above

Page 8

l.3pts Given the following code, which statements are true about the program?

public class Person {
protected transient String name;
Person () { this.name = "NoName"; }
Person(String name) { this.name = name; }

}

public class Student extends Person {

protected long studNum;
Student () { }
Student(String name , long studNum) {

super(name);
this.studNum = studNum;

}
}

import java.io.Serializable;
public class GraduateStudent extends Student implements

Serializable {
private int year;
GraduateStudent(String name , long studNum , int year) {

super(name , studNum);
this.year = year;

}
public String toString () {

return "(" + name + ", " + studNum + ", " + year + ")";
}

}

import java.io.*;
public class Q1l {

public static void main(String args [])
throws IOException , ClassNotFoundException {

FileOutputStream outputFile = new
FileOutputStream("storage.dat");

ObjectOutputStream outputStream = new
ObjectOutputStream(outputFile);

GraduateStudent stud1 = new GraduateStudent("Aesop", 100, 1);
System.out.print(stud1);

outputStream.writeObject(stud1);
outputStream.flush ();
outputStream.close ();

FileInputStream inputFile = new
FileInputStream("storage.dat");

ObjectInputStream inputStream = new
ObjectInputStream(inputFile);

GraduateStudent stud2 = (GraduateStudent)
inputStream.readObject ();

System.out.println(stud2);
inputStream.close();

}
}

© Fails to compile

© Compiles, but throws a runtime exception

© Prints (Aesop, 100, 1)(NoName, 0, 1)

© Prints (Aesop, 100, 1)(Aesop, 100, 1)

© Prints (Aesop, 100, 1)(null, 0, 1)

Page 9

m.3pts Which statements are true about the classes SubA, SubB, and SubC?

class SubA <T> {
public List <?> fuddle () { return null; }
public List scuddle(T t) { return null; }

}

class SubB <U> extends SubA <U> {
public List fuddle () { return null;}
public List <?> scuddle(U t) { return null; }

}

class SubC <V> extends SubA <V> {
public List <V> fuddle () { return null;}
public List <? extends Object > scuddle(V t) { return null; }

}

© Class SubB will not compile

© Class SubC will not compile

© Class SubB will compile

© Class SubC will compile

© Class SubB overloads the methods in class SupA

© Class SubC overloads the methods in class SupA

© Class SubB overrides the methods in class SupA

© Class SubC overrides the methods in class SupA

n.2pts Which interface is used to de�ne a class that can execute within its own thread?

© Run

© Runnable

© Thread

© Threadable

© Executable

o.2pts Which method is used to schedule a thread for execution?

© Init()

© Start()

© Run()

Page 10

p.3pts Which method(s) may cause a thread to stop execution?

© Sleep()

© Stop()

© Yield()

© Wait()

© Notify()

q.3pts Given the following code, which of the following statements are true?

public class Agg {
public static void main(String argv []) {

Agg a = new Agg();
a.go();

}

public void go() {
DSRoss ds1 = new DSRoss("one");
ds1.start ();

}
}

class DSRoss extends Thread {
private String sTname = "";
DSRoss(String s) {

sTname = s;
}

public void run() {
notwait ();
System.out.println("finished");

}

public void notwait () {
while (true) {

try {
System.out.println("waiting");
wait();

} catch (InterruptedException ie) {}
System.out.println(sTname);
notifyAll ();

}
}

}

© Fails to compile

© Prints "waiting"

© Prints "waiting" "�nished"

© Compiles, but throws a runtime exception

Page 11

Problem II: Practice with Inheritance and Polymorphism (15 Points)

Let's use polymorphism to implement a very famous story line from our childhood - the
Tortoise and Hare race. In this race, the Tortoise moves slowly and steadily with the motto
of "slowly and steady wins the race." On the other hand, the Hare spurts to the �nish line
with the philosophy of "jump, let the muscles pump." Hence our two racers di�er in the way
they move.

To represent a contender, we de�ne a base class Racer and two derived class Tortoise
and Hare. The Racer class has three instance variables: String ID that identi�es the type
of racer ('Tortoise' and 'Hare'), int x which denotes the x-axis position, and int y which
denote the y-axis position. Inspect and study the activity's archive, HareTortoise.zip,
and perform the following:

a.5pts Create a collection of racers: before a race begins, the user enters, via a pre-
programmed dialog box, the desired number of racers of each type. Your job is to
create, instantiate, and add Tortoise and/or Hare objects to an ArrayList leveraging
the concept of polymorphism. Complete the appropriate method to do so.

b.5pts Run the race: run the race by moving and re-drawing all the racers towards the �nish
line. Complete the appropriate method to do so.

c.5pts Rank the racers: at the end of the race, display the �nal positions of all the racers

sorted by their proximity to the �nish line (from the farthest to the closest). For this
purpose, use the sort method of the Arrays class. Complete the appropriate method to
do so.

Problem III: Practice with Socket Programming (45 Points)

In this exercise, you will code a group chat room. In this chat room, clients connect to
a remote server with a designated IP and port number. The server accepts connections
from an arbitrary number of clients. Any message sent from one client is broadcast to all
other clients. You must leverage the concepts of socket programming and multi-threading
to achieve this task. You may or may not create a GUI for your chat room.

Page 12

