
Distributed Systems
CS 15-440

Ray

Hend Gedawy

Lecture 19, November 14, 2023

Outline
• Introduction

• Ray Programming & Computation Model

• Ray Cluster Architecture

• Ray Scheduling

• Lifetime of a Ray Task

Outline
• Introduction

• Ray Programming & Computation Model

• Ray Cluster Architecture

• Ray Scheduling

• Lifetime of a Ray Task

Ever Growing Data Quantities

Data Analysis & Machine Learning

A forecast by International Data Corporation (IDC) estimates that there will be 41.6 billion
IoT devices in 2025, capable of generating 79.4 zettabytes (79.4 * 1021bytes) of data.

State of the Art Models & the Need to Scale

According to unverified
information leaks, GPT-4 was
trained on about 25,000 Nvidia
A100 GPUs for 90–100 days.

Assuming that the GPUs were
installed in Nvidia HGX servers
which can host 8 GPUs each,
meaning 25,000 / 8 = 3,125
servers were needed.

source

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Platforms/Tools for Distributed Data
Analysis & ML

• On one end of the spectrum, we have tools
like OpenMPI, Python multiprocessing, and ZeroMQ,

• Provide low-level primitives for sending and receiving
messages.

• These tools are very powerful

• They provide a different abstraction and so single-
threaded applications must be rewritten from scratch to
use them.

• You do the data splitting, distribution, and collect results

On the other end of the spectrum, there is domain-specific
distributed computing tools for different machine learning

components in the ML ecosystem

These tools are very powerful and specialized

Platforms/Tools for Distributed Data
Analysis & ML

Horovod,
Distributed
TensorFlow,

PyTorch

Map
Reduce,
Hadoop,

Spark

Clipper,
MLFlow,
FastAPI,
Comet

Baselines,
Rllab, ELF,

coach,
TensorForce
, ChainerRL

Vizier,
HyperOpt,

Optuna

To build a cross-cutting application that needs tight coupling between different ML components (e.g. training and serving);
Either glow together these different systems

Or Build a new system from scratch (e.g. Alpha Go by DeepMind and DoTa by OpenAI)

What ML
components/steps

do you know?

Ray Novelty

1. Occupies a unique middle ground (general purpose but takes care of scaling,
performance, scheduling, elasticity, etc.)

2. Powerful API that builds on existing concepts (i.e. functions and classes) and allows a
serial applications to be parallelized and run on a cluster with relatively few additional

lines of code

Ray Novelty

Ray simplifies the process of developing and
deploying large-scale ML models.

Photo Credit: https://www.youtube.com/watch?v=iuSbCoe34cw

What is Ray

• Ray provides a general-purpose distributed compute framework for
• scaling ML models or workloads, allowing developers to train and deploy models faster and more efficiently.

• writing parallel and distributed Python application

• It provides fundamental primitive abstractions that allow taking the existing program and turn it
into a distributed one

Photo Credit: https://www.youtube.com/watch?v=iuSbCoe34cw

Ray is an active open-source project developed at the
University of California, Berkeley. (First Released 2018)

Companies Using Ray - Examples

Outline
• Introduction

• Ray Programming & Computation Model

• Ray Cluster Architecture

• Ray Scheduling

• Lifetime of a Ray Task

Programming & Computation Model

Tasks (Functions) Actors (Classes)

Dynamic Task Graph

Programming
Model

Computation
Model

Python to Ray
Ray API allows serial applications to be parallelized without major modifications.

Function Task

Class Actor

Object Immutable
Object

Ray takes the existing concepts of functions and classes and
translates them to the distributed setting as tasks and actors.

Both Operate on Immutable objects

Tasks

task

output

A python function can be turned into parallel Task by adding
@ray.remote decorater

When the function is invoked by adding (.remote) to the
function name

• This generates a task
• The task is handed off to the backend
• The backend schedules it on the machine(s)/worker(s)

to execute it asynchronously

The method invocation returns immediately (no locking)
• It returns an object (future or object ID) representing the

eventual output of the computation

How would using Futures be helpful?

Ray Objects as futures
• Futures are objects can contain a value sometime in the future

• The value is fetched When available

• Enable Asynchronous Execution

• Ray objects are known as remote objects because they can be stored
anywhere within a Ray cluster.
• can exist on one or multiple nodes

Tasks Dependency &
Blocking
• Tasks Dependency:
• A task that depends on

other tasks, won’t
execute until they finish

• Although it returns
immediately

• Blocking and waiting for the results:
Ray.get

A dynamic graph is created in the
backend as tasks are invoked

Photo Credit

The need for Actors
• What if the application requires multiple tasks operating on the same shared

mutable state.

• This comes up in multiple contexts in machine learning where the shared
state may be:
• The state of a simulator,

• The weights of a neural network,

• Encapsulation of some interaction with the real world

• This can’t be done with the remote functions and tasks

• Ray uses an actor abstraction to encapsulate mutable state shared between
multiple tasks.

Actors

• Ray.get() allows blocking on actor tasks
• You can specify the logical resources (number of CPUs/GPUs) to be allocated for the

task or actor
• These are hard requirements

Photo Credit

• Stateful service on cluster that enables message passing

• Creating an object of the actor, starts a new process in the cluster with that object state

• Method invocations on the actor object translates into tasks assigned to and executed on
that actor

• Tasks invoked on the actor share the state of the process and can mutate it
• The methods invoked in an actor can be used to send state/messages

• Each task invoked on the actor is implicitly dependent on the one that executed before it

Note: Execution of both remote tasks and actor methods is automatically
triggered by the system when their inputs become available.

Dynamic Task Graph
• Represents the entire application and is

only executed a single time.
• It is not known up front. It is constructed

dynamically as the application runs
• The execution of one task may trigger the

creation of more tasks.

• Both Task and Actor abstractions are
working on top of the same dynamic task
graph abstraction
• The mutable state is encoded in the graph

abstraction

Outline
• Introduction

• Ray Programming & Computation Model

• Ray Cluster Architecture

• Ray Scheduling

• Lifetime of a Ray Task

Ray Cluster – Worker Nodes

A set of worker nodes each of which consists of the following physical processes:

(1) (n)

....

A raylet: a C++ program and has two main that communicate across the entire cluster
• A scheduler. Responsible for resource management to fulfill task requirements
• A shared-memory object store responsible for storing and transferring large objects.

• Once a worker competes a task, it talks to the object store directly and stores the input and output value of
each task

• No IPC going on between worker processes on the same node & No context switching

One or more worker processes
• Python processes waiting in a loop to be assigned tasks
• A worker process is either stateless (execute any function) or an actor (only executes methods from a class).
• The default number of initial workers is equal to the number of CPUs on the machine.

Ray Cluster – Head Node
One of the worker nodes is designated as the head node.
In addition to the worker processes, the head node also hosts:

• The Global Control Store (GCS) is the brain that has all the metadata about tasks.
• Maintains the entire control state
• The GCS is a fault-tolerant key-value server
• Updated based on heartbeats
• Can run anywhere

• The Driver process(es): is a special worker process that executes
the top-level application (e.g., `__main__` in Python).
• can submit tasks, but cannot execute any itself.
• can run on any node, but by default are located on the head node

(1) (n)

....

Scheduling is unique because it is distributed & Object store is distributed
across the entire cluster and allows sharing objects between nodes

Ray Scalable Architecture
How is the Dynamic task graph
(DTG) executed in a system?

• The scheduler logs the (lineage
of the) task to the GCS

• the scheduler assigns the task to
one of the worker processes

• The worker process will return
the value and store it in the
object store

• The output value can be
retrieved now using ray.get()

Ra
yl

et
Object Store

Worker Worker

Scheduler

......

Worker Node

Global Control Store

x_id

Ray Scalable Architecture

Ra
yl

et

Object Store

Worker Worker

Scheduler

......

Global Control Store

x_id

Ra
yl

et

Object Store

Worker Worker

Scheduler

......

y_id

Zeros

Ra
yl

et

Object Store

Driver Worker

Scheduler

......

Node 1 Node 2 Node 3

Distributed
DAG Scheduler

Sharded Metadata
Storage

• Nodes might execute tasks independently
• Schedulers can talk to each other directly to

Transfer data and tasks from one node to another
• Schedulers achieve policies for better load

balancing and optimize for things like data locality

Outline
• Introduction

• Ray Programming & Computation Model

• Ray Cluster Architecture

• Ray Scheduling

• Lifetime of a Ray Task

Ray Scheduling
Given task or actor with specific resource requirements , what is the

best node(s) to run this task/actor.
• A Node State:

• Feasible: Node has the required resources:
• Available: resources are free now

• Unavailable: resources are currently used by another (task or actor)

• Infeasible: Node doesn’t have required resources (GPU required nut only
CPU available)

• Task or actor can only be scheduled if there are feasible nodes (even
if unavailable), otherwise Ray waits for feasible nodes are added to
the cluster.

• Ray has different scheduling strategies; can be specified with
@ray.remote decorator
• E.g. @ray.remote(scheduling_strategy="SPREAD")

Ray Scheduler

Nodes
State

Resource
Requirements

Target
Node(s)

Ray Scheduling Strategies
• Default Strategy: Schedules tasks or actors onto a group of the top k nodes.

• Top:

• (1) have large task arguments (input needed for the task) local

• (2) have low resource utilization (for load balancing)

• Within the top k group, nodes are chosen randomly

• K: default is 20% of the total number of nodes.

• Spread Strategy: spread the tasks or actors among available nodes.

• PlacementGroupSchedulingStrategy: schedules the task or actor to where the placement group is located.

• Placement groups allow users to atomically reserve groups of resources across multiple nodes (i.e., gang scheduling).

• NodeAffinitySchedulingStrategy: Schedules on a particular node specified by its node id

• low-level strategy prevents optimizations by a smart scheduler

• If node is Alive and feasible (even if not available currently), the task/actor will be scheduled to that node (when available)

• Otherwise, the Soft parameter is checked:

• Soft = True: schedule on another feasible node

• Soft=False: task or actor will fail with TaskUnschedulableError or ActorUnschedulableError

Only run the task on the local node.
node_affinity_func.options(scheduling_strategy=
ray.util.scheduling_strategies.NodeAffinitySchedulingStrategy(
node_id=ray.get_runtime_context().get_node_id(), soft=False,)).remote()

Why?

Outline
• Introduction

• Ray Programming & Computation Model

• Ray Cluster Architecture

• Ray Scheduling

• Lifetime of a Ray Task

Head Node

Lifetime of a Ray Task
• Driver submits the task to the local scheduler

• The scheduler logs the task to the GCS

• If the scheduler needs to retrieve the object data for
one of the dependencies of the task, it will ask the
GCS for the location of that object

• Then it is able to request that object data directly
from the other node and receive the value in its own
object store

• When all data dependencies are available at the
node, the scheduler assigns the task to one of the
workers

• The worker will return the value and store it in the
object store

• The output value can be retrieved now using
ray.get()

Global Control Store

X_id Y_id
Y_id

Y_id

y_id

Z_id

multiply

Driver

multiplymultiply

1 2

How do you think Tasks Lineage stored in
the GCS can help with Fault Tolerance?

Recap
• Ray provides a general-purpose distributed compute framework for ML and

distributed/parallel python applications
• Ray has an efficient API that builds on existing concepts (functions and classes) to

allow turning a sequential program into a distributed one with relatively few lines
of code

• Ray creates a dynamic task graph that represents the entire application
• Ray allows specifying resource requirements for tasks and allows different

scheduling strategies
• Achieves scalability through different things such as:

• Replicating global scheduler if it becomes a bottleneck
• Distributed Object Store

Credit
• https://docs.ray.io/en/latest/

• Ray: a distributed framework for emerging AI applications

• https://www.usenix.org/system/files/osdi18-moritz.pdf

• https://bair.berkeley.edu/blog/2018/01/09/ray/

• https://www.usenix.org/system/files/osdi18-moritz.pdf

• https://venturebeat.com/ai/ray-the-machine-learning-tech-behind-openai-levels-up-to-ray-2-
0/#:~:text=Over%20the%20last%20two%20years,OpenAI%20to%20Shopify%20and%20Instacart .

• https://medium.com/juniper-team/ray-distributed-computing-framework-for-ai-ml-applications-
4b40617be4a3

• https://bair.berkeley.edu/blog/2018/01/09/ray/

