
Carnegie Mellon University in Qatar

Distributed Systems

15-440 - Fall 2023

Project 1

Out: Sep 5, 2023

Design Report Due: Sep 17, 2023

Due: Oct 1, 2023

1

Contents

1 Project Objective 3

2 FileStack 3

2.1 Overview . 3
2.2 Functionalities . 3
2.3 Entities, Architecture, and Communication . 4

2.3.1 Storage Servers - Naming Server Communication 4
2.3.2 Client - Naming Server Communication 5
2.3.3 Naming Server - Storage Servers Communication 5
2.3.4 Client - Storage Servers Communication 5

2.4 RMI Library . 6
2.5 Interfaces . 7

3 Recap 8

4 A Working Example 8

5 Implementation 9

5.1 The RMI Package . 10
5.2 The Naming Package . 12
5.3 The Storage Package . 12
5.4 The Common Package . 13

6 Test Suite 13

7 Tips 13

8 Rubric 14

9 Getting Started 17

10 Design Report Guidelines 18

10.1 Project Design . 18
10.2 Project Implementation . 18

11 Deliverables 19

11.1 Design Report Deliverable . 19
11.2 Final Deliverable . 19

12 Submission 19

13 Late Policy 19

Page 2

1 Project Objective

The objective of this project is to apply the knowledge of client-server communication and
Remote Method Invocation (RMI) to build a distributed �le system, which we refer to
as Remote File Storage and Access Kit (FileStAcK, or simply FileStack). RMI involves the
creation of stubs and skeletons at client and server sides, respectively which allow for transparent
location, reading and writing of �les maintained at networked computers. In RMI, the underlying
details are generally hidden from users, whereby a calling object can invoke a method in a
potentially remote node as if it is local.

2 FileStack

The following subsections will provide an overview of FileStack, followed by descriptions of its
inherent functionalities, entities, architecture, communication between entities and the required
RMI library and interfaces.

2.1 Overview

In this project, you will implement FileStack, a distributed �le system that stores a vast amount
of data (�les) which typically do not �t on a single machine. Brie�y, the �les are physically
stored on a set of servers called Storage Servers. Users, referred to as Clients, can create,
delete, read, write, and list �les (among others), all via using Remote Method Invocation (RMI).
As a requisite step, Clients need to identify Storage Servers that host the required �les. They do
so with the help of a mediator. Clients contact a Naming Server (in this project we allow only
one centralized Naming Server) which maps every �le name to a Storage Server. The Naming
Server is thus a repository of metadata or data about data.

2.2 Functionalities

The operations (or functionalities) that are available to the Clients of FileStack are:

1. CreateFile(path): create the �le referred to by path1.

2. CreateDirectory(path): create the directory referred to by path.

3. Read(path, o�, n): read n bytes of data from the �le referred to by path starting at an
o�set o�.

4. Write(path, o�, data): write n bytes of data to the �le referred to by path starting at an
o�set o�.

5. Size(path): return the size, in bytes, of the �le referred to by path.

6. IsDirectory(path): return true if path refers to a directory.

7. List(path): list the contents of the directory referred to by path.

8. Delete(path): delete the �le or directory referred to by path.

9. GetStorage(path): get the Storage Server (or more precisely, a representing stub) hosting
the �le referred to by path.

In this project, you will implement all the above-listed functionalities except the Delete(path)
function, which is left as a bonus to implement (NOTE: this is the Naming Server delete).

1Path is a string that refers to an absolute path (with "/" being the root) of a �le or a directory in the Naming
Server's directory tree.

Page 3

2.3 Entities, Architecture, and Communication

Figure 1: Architecture of FileStack

The main entities in FileStack are: Clients, Naming Server, and Storage Servers. A
Client is the end-user of FileStack who wishes to perform operations on �les. We assume that a
Client knows the path of a �le it wishes to manipulate. The Naming Server is a critical entity
in FileStack because it is the means by which Clients locate �les stored at Storage Servers. It
runs at a pre-de�ned address that is known by both, Clients and Storage Servers. A Storage
Server physically stores �les in its local �le system. The project assumes that a �le cannot be
partitioned across Storage Servers (i.e., no �le striping is applied) and that a Storage Server can
host multiple �les.

FileStack is based on a client-server architecture as shown in Figure 1. In this architecture,
a client is a service requester and a server is a service provider. Servers also behave as clients
when requesting services provided by other servers. For example, the Naming Server behaves
as a client when requesting the services of a Storage Server. In Figure 1, all forward arrows
(arrows 2, 3, and 5) represent requests originating from clients to servers, and the corresponding
backward arrows represent the services provided by the servers in response.

It is evident from the arrows in Figure 1 that distributed systems entail a lot of communi-
cation between its entities. FileStack is no exception. We will now discuss the purpose of
communication in FileStack and the communicating entities.

2.3.1 Storage Servers - Naming Server Communication

Upon start-up, each Storage Server sends a list of paths (representing the �les that it currently
hosts) to the Naming Server, a process we denote as registration. The Naming Server then
traverses this list and adds the paths to its directory tree where each leaf node is a (�lename,
Storage Server) tuple. During the traversal, the Naming Server remembers paths of existing �les
and ultimately replies back to the Storage Server with a list of duplicate paths (see Section 5.3
for details on that). Figure 1 depicts this communication with arrows 1 and 2. After registration
by all Storage Servers, the Naming Server is deemed to be capable of locating all �les stored at
each Storage Server.

Page 4

2.3.2 Client - Naming Server Communication

Arrows 3 and 4 in Figure 1 illustrate this communication. A Client contacts the Naming Server
whenever it needs to perform an operation on a �le. While some operations cannot be directly
handled by the Naming Server, in which case it replies back with the Storage Server that hosts
the �le, other operations can be directly handled by it.

Operations requiring the content of a �le namely read, write and size, cannot be directly han-
dled by the Naming Server. When a Client wishes to perform any of those operations, it �rst
contacts the Naming Server to get the Storage Server (or more precisely a representing stub)
that hosts the �le. It does so using the getStorage operation and, subsequently, communicates
with the respective Storage Server to handle the operation. In Figure 1, arrows 5 and 6 mark
this communication.

All the other operations, namely: createFile, createDirectory, isDirectory, list, and delete, can
be handled by the Naming Server without involving the Storage Servers. This is because the
Naming Server merely leverages its tree to handle such operations without requiring �le contents.
It also ensures the integrity of the Naming Server's directory tree. Clients cannot create/delete
�les/directories on the Storage Servers without the awareness of the Naming Server. Therefore,
the Naming Server �rst updates its directory tree by adding/deleting a �le/directory and then
instructs the respective Storage Server to perform the physical creation/deletion.

You have to create a design that supports the delete operation without actually implement-
ing it. The implementation of the delete operation is a bonus-question in this project but a
requirement in Project 2.

2.3.3 Naming Server - Storage Servers Communication

This communication is illustrated in Figure 1 by arrows 1 and 2. Upon start-up, each Storage
Server recursively lists its hosted �les and sends the resultant list of paths to the Naming Server.
As described earlier, we denote this process as registration. In response, the Naming Server
replies with a list of duplicate �les (if any) which a Storage Server deletes from its local �le
system. In addition, it also deletes any directories that are rendered empty, a process known as
pruning.

Besides their communication upon boot-strapping FileStack, the Naming Server sends create
and delete operations to Storage Servers on behalf of Clients after changes to its directory tree
have been successfully committed.

2.3.4 Client - Storage Servers Communication

Arrows 5 and 6 illustrate this communication that occurs when a Client wishes to perform a
read, write, or size operation, after retrieving the respective Storage Server from the Naming
Server (see Client - Naming Server Communication above).

Page 5

2.4 RMI Library

As explained earlier, Clients request the Naming and the Storage Servers to perform operations
(methods) on �les. The Naming Server also behaves as a Client when it requests the Storage
Server to perform create/delete operations. The recipient server, in return, ful�lls requests by
executing the operations' logic and returning results. This implies that servers can transiently
act as clients when requesting the services of other servers. We use the terms client (with a
lower-case c) and server (with a lower case s) to denote any service requester and provider
respectively. For the rest of the document, we will also use the term "invoking a method" when
we actually mean "requesting to perform an operation."

When a client invokes a method, it essentially invokes a remote method, hence, the name Remote
Method Invocation (since the method's logic resides on a server). The client is only aware of the
method's name, not where it actually resides. To enable a client to execute a remote method,
we would require an RMI library. RMI library takes care of initiating client connections to the
appropriate servers and forwarding method invocations to them, thereby, making them appear
to clients as if the methods are implemented locally. At the recipient servers, the RMI library
receives client connections, invokes the requested methods, and returns results. The servers
execute the methods while being totally oblivious to the fact that the invocations were initiated
by remote Clients. Thus, the RMI library helps masking the client-server communication.

An RMI library is based on the concept of Stubs and Skeletons. When a client needs to perform
an operation, it invokes a corresponding remote method via an object called the "stub." The
stub object, or simply the stub, is part of the client and is responsible for handling the invoked
method, be it local or remote. If a method is local, the stub merely invokes a helper function that
implements the "logic" of the operation. On the other hand, if the method is remote, the stub
initiates a connection to the appropriate server (more precisely the server's skeleton), marshalls2

the method name and arguments, transmits the byte stream over the network, unmarshalls3 the
result and returns it to the client. Thus, stubs allow clients to invoke local and remote methods
alike, leaving the underlying complexity associated with remote methods to the stub.

Skeletons are counterparts of stubs but reside reversely at servers. Each stub communicates
to a skeleton. A skeleton is an object responsible for listening to multiple client connections,
unmarshalling the byte stream, invoking the method implementing the logic of the requested
operation, marshalling the results, and sending them back to the client.

2Marshaling is the process of converting a datum (e.g., an object) into a byte stream that can be transmitted
over a network.

3Unmarshaling is the reverse process of marshaling, whereby a datum or an object is reconstructed from a
byte stream.

Page 6

2.5 Interfaces

A server usually declares all the methods it handles in interfaces. An interface contains a subset of
the methods that can be invoked by a particular client. For example, the Naming Server declares
two interfaces, one for methods that can be invoked by Clients and the other for methods that
can be invoked by Storage Servers. Segregating declarations into multiple interfaces ensures
that clients can only invoke their permissible methods. In FileStack, the Naming Server splits
its method declarations across two interfaces:

� Registration : de�nes a single method, namely register, invoked by Storage Servers upon
bootstrapping FileStack.

� Service : de�nes the methods that can be invoked by Clients and handled directly by the
Naming Server. As described in Section 2.3, the methods are: getStorage, isDirectory, list,
createFile, createDirectory, and delete.

Similarly, Storage Servers split their method declarations into two interfaces:

� Command : de�nes two methods create and delete, which can be invoked by the Naming
Server whenever a Client requests any of the createFile, createDirectory or delete oper-
ations.For any of these operations, the Naming Server essentially commands a speci�c
Storage Server to alter its local �le system accordingly.

� Storage : de�nes the methods that can be invoked by Clients and handled only by Storage
Servers. As described in Section 2.3, these methods are: size, read and write.

For each interface, a stub and a corresponding skeleton are required. A stub uses an inter-
face to determine if an invoked method is remote or local, and subsequently performs tasks as
described in Section 2.3. The corresponding skeleton uses the interface to verify if an invoca-
tion is legitimate (i.e., the invoked method belongs to the interface). If so, the skeleton acts as
described in Section 2.3.

To create a stub, a client requires the following information: an interface and the network
address (IP and port) of the corresponding skeleton (or more precisely, the IP address of the
Storage Server at which the skeleton exists). Similarly, to create a skeleton, a server requires the
following information: an interface, a class that implements the logic of the methods de�ned in
the interface, the server's IP address, and a port number. Essentially all skeletons belonging to
a server possess the same IP address but di�erent port numbers.

The Naming Server creates two skeletons, one for each interface. We call these skeletons Regis-
trationSkeleton and ServiceSkeleton, which correspond to the Registration and the Service
interfaces respectively. In any distributed system, stubs that communicate with a known server,
such as the Naming Server, are created by clients at boot-up. In other words, since the network
addresses of RegistrationSkeleton and ServiceSkeleton are prede�ned, each Storage Server and
Client, at boot-up, creates RegistrationStub and ServiceStub respectively.

Page 7

Likewise, a Storage Server creates two skeletons, one for each interface. We call these skele-
tons CommandSkeleton and StorageSkeleton, which correspond to the Command and the
Storage interfaces, respectively. A problem, however, is that a Storage Server may run on any
machine and its address (and, thereby, the addresses of its skeletons) is not prede�ned. This
implies that neither Clients nor the Naming Server can create the corresponding stubs to commu-
nicate with Storage Servers. To resolve this issue, each Storage Server creates its CommandStub
and StorageStub. During registration, the Storage Servers transmit their stubs to the Naming
Server along with their list of �les. Hence, when a Client invokes the getStorage method, what
the Naming Server actually returns is the CommandStub of the Storage Server which hosts the
requested �le. Similarly, when the Naming Server needs to communicate with a Storage Server,
it uses the respective StorageStub.

3 Recap

Let us revisit the whole problem at a high level. The main issue is to enable Clients to perform
operations on �les stored on remote servers in a distributed �le system. Technically, we refer
to the act of performing an operation as invoking a remote method. We denote a method as
remote because the "logic" of the method is implemented on remote servers, namely the Naming
Server or the Storage Servers. In order to trigger a method at a server and return its results,
we need stub and corresponding skeleton objects. A client may either possess a stub (created
at boot-up) or may have acquired it from the Naming Server. A server creates its skeletons at
boot-up using its pre-de�ned interfaces.

4 A Working Example

Consider the situation in which a Client wishes to perform a read operation on a �le named
"abc" (assume the name "abc" is of type String). To do so, the Client requires StorageStub to
communicate with StorageSkeleton of the Storage Server hosting the �le "abc." So as a �rst step,
it must contact the Naming Server to get StorageStub. As such, it invokes getStorage(abc)
using ServiceStub. ServiceStub at the Client side connects to ServiceSkeleton at the Naming
Server, marshalls the method name (i.e., getStorage), argument types (i.e., String) and argument
values (i.e., "abc"), transmits the byte stream, unmarshalls the result (after �nally received from
the Naming Server) and closes the connection. ServiceSkeleton listens for incoming connections,
accepts the new connection, unmarshalls the incoming stream to identify the requested method,
calls the locally de�ned getStorage(abc) function, marshalls StorageStub object and returns
it to ServiceStub.

Now that the Client has StorageStub, the second step is to contact the Storage Server. The
Client invokes read(abc,0,10) using StorageStub which in return communicates with Stor-
ageSkeleton. StorageStub and StorageSkeleton interact in a similar manner as ServiceStub and
ServiceSkeleton, and the Client eventually acquires a bu�er containing 10 bytes of data read
from the �le "abc." The entire example is demonstrated in Figure 2 (following page).

Page 8

Figure 2: An example of a Client performing a read operation on �le 'abc'

5 Implementation

In this project you will be using the Java Programming Language. You are provided with a
starter code P1_StarterCode.zip that contains �ve primary packages namely rmi, naming, stor-
age, client, and common, which you must implement to create a fully-functional distributed
�le system (i.e., FileStack). We recommend that you implement the packages in the following
order, (1) rmi, (2) common, (3) naming, and (4) storage. The client package has been fully
implemented for you.

In this section, we provide you with design considerations for successfully implementing each
package. In addition, it is important that you read the package-info document under each
package prior to implementing the package.

Page 9

5.1 The RMI Package

Figure 3: Sockets and Multi-threading

The RMI package is your RMI library. The RMI library consists of two generic (parametrized)
classes:

Skeleton and Stub. Both, the Skeleton and the Stub classes take a remote interface4 as a
parameter. They de�ne and implement methods that are common to all skeletons and stubs in
FileStack (e.g., constructors to instantiate skeleton/stub objects as well as start() and stop()

methods to start and stop skeletons/stubs, respectively).

The connection and communication between stubs and skeletons are carried out using Java
API for TCP socket5 programming. The skeleton is multi-threaded. When it is started using
the start() method, its main thread creates a listening socket (see Figure 3), which waits for
incoming client connections. Once a client's request is received, the skeleton accepts the request,
creates a new thread (or what we call a client thread) to service the request, and instantiates
a new service socket within the client thread to handle further communication with the client.
Figure 3 illustrates the concept of stubs and skeletons using multi-threaded socket programming.

A stub is implemented in Java as a dynamic proxy (java.lang.reflect.Proxy). A proxy
has an associated invocation handler. When a method is invoked on a proxy (stub) object, the
method name and parameters are encoded and dispatched to the invoke method of the invoca-
tion handler. For instance, in Figure 2, when the client invokes the method getStorage on the
proxy ServiceStub, the method name and arguments (i.e., getStorage and "abc") are encoded
and dispatched to the invoke method of the ServiceStub's invocation handler.

The invoke method checks whether the invoked method is local or remote. In the case of
a local method (i.e. a method that the proxy implements), the local method is simply in-
voked and passed the arguments. In this project, local methods are equals(), hashCode() and
toString(). The equals method determines if two proxies were created for the same skeleton.
HashCode returns the hash code of a proxy object. toString prints information about a proxy. In
the case of a remote method, the proxy connects to the corresponding skeleton at the server side,
marshalls the method name, parameter types and values, and sends the entailed byte stream.

4A remote Interface is a Java interface in which each method declared in it throws an exception of type
RMIException.

5A socket is an end-point in a bi-directional communication between two processes running typically on two
separate computers on a network. Each socket is bound to a di�erent port number which is utilized by TCP to
identify the data destined to the socket.

Page 10

You can read more about implementing a dynamic proxy at http://tutorials.jenkov.com/java-
re�ection/dynamic-proxies.html.

The RMI library is best implemented in two phases:

Phase 1 : learn more about the two Java socket APIs (Socket and ServerSocket) and dynamic
proxies (java.lang.reflect.Proxy) to implement a basic stub-skeleton communication. Use
ObjectOuputStream and ObjectInputStream which allow writing and reading primitive data
types of Java objects (or referred interchangeably to as serializing data) to output and input
streams, respectively. At the end of this phase, a stub should be able to connect to a skeleton,
and send and receive objects. Similarly, a skeleton must be able to accept several client connec-
tions, read objects and send back objects (including exceptions).

You should make the server as robust as possible via handling various types of exceptions and
displaying meaningful messages whenever needed, so as to avoid abrupt crashes. For example,
if the stub fails to create an input stream, it should throw an RMIException with a meaningful
message. You should also clean-up (i.e. close sockets and streams) whenever required.

Phase 2 : Now that you are able to send and receive serialized objects (using ObjectInput-
Streams and ObjectOutputStreams), it is time to send and receive more meaningful data. The
stub should now check whether the invoked method is local or remote using its de�ned interface.
When the invoked method is local, the stub simply invokes a corresponding locally implemented
method (or what we call an implementor method). On the other hand, when the invoked method
is remote, the stub sends the method name and parameter types and values to the respective
skeleton. The skeleton should receive them, invoke the corresponding method, which implements
the necessary logic, and send back the generated result to the stub. Exceptions that arise due to
unsupported methods during unmarshalling, and the ones that are thrown by the implementor
methods should be communicated back to the client.

Handout continues on the next page(s)

Page 11

5.2 The Naming Package

The naming package contains the Registration and Service interfaces, as well as the Nam-
ingServer class that creates the necessary skeletons and stubs and implements the logic of all
the operations handled by the Naming Server. For the create operation, we leave the strategy
of selecting a Storage Server to host a new �le or directory up to you.

The Naming Server creates and maintains the FileStack directory tree, with the top-level direc-
tory being the root represented by the path "/". While the inner tree nodes represent directo-
ries, the leaves represent �les (or more precisely �le,stubs tuples). The Naming Server gradually
builds its tree during registration. After registration, the Naming Server uses its tree to handle
operations. It is important to design the directory tree in a way that allows the Naming Server
to easily look-up, traverse and alter the tree, as well as detect invalid paths (e.g., a path that
denotes a non-existing �le).

5.3 The Storage Package

The storage package contains the Command and Storage interfaces, as well as the StorageServer
class that creates the necessary skeletons and stubs and implements the logic of all the opera-
tions handled by the Storage Server.

Each Storage Server has its own local �le system. The �les hosted by a Storage Server are
stored in its local �le system in a directory denoted as temporary directory. A temporary direc-
tory and all its sub-directories and �les are part of FileStack i.e. part of the Naming Server's
directory tree. Each �le/directory at a Storage Server has an absolute local path with respect
to the root directory of the Storage Server.

In other words, a local path dictates the location of a �le/directory at the local �le system of
a Storage Server. Paths we have been referring to so far in the document are relative paths that
dictate the locations of �les/directories on FileStack. We call these paths FileStack paths.

FileStack paths refer to the directory tree of the Naming Server and are pre�xed with the
root directory of FileStack (i.e., "/") followed by the temporary directories of Storage Servers.
To exemplify, consider a �le f1.txt stored in a temporary directory, tmp, at Storage Server, SS1,
with an absolute path of /home/SS1/Public/tmp/sub_dir1/f1.txt. Therefore, the local path at
SS1 will be /home/SS1/Public/tmp/sub_dir1/f1.txt, while the FileStack path at the directory
tree of the Naming Server would be /tmp/sub_dir1/f1.txt. Clients and the Naming Server know
and use FileStack paths only. The job of resolving (or mapping) FileStack paths into local paths
(and vice-versa) is the responsibility of Storage Servers.

During registration, the Storage Server recursively lists the contents of its temporary direc-
tory and sends the list of local paths (of �les only) along with its stubs to the Naming Server.
The Naming Server maps the received local paths to FileStack paths and sends back a list of
duplicate �les for deletion. Duplicate �les are �les that have been already registered and there-
fore exist in the Naming Server's directory tree. For instance, during the registration of Storage
Server SS1, if the Naming Server encounters f1.txt sent by SS1 in its directory tree, then f1.txt
is deemed a duplicate �le.

In Java, directories and �les are represented as java.io.File objects. Peruse through the
documentation of java.io.File to understand more the File's constructors and methods.

Page 12

5.4 The Common Package

This package contains the class Path that de�nes utility functions which manipulate paths.
These functions are used as helper methods by the Naming Server and the Storage Servers.

6 Test Suite

We have provided four packages. Speci�cally, rmi, common, naming and storage, containing test
�les that test the corresponding package. We recommend that you test your packages as you
move forward. The test cases test if your implementation conforms to the design speci�cations,
and checks the correctness of the implementation. Please note that this is a service o�ered
to help you design and test your code faster. You are solely responsible to ensure that your
implementation is �awless. During grading, we may use other test cases to make sure that your
project works as expected.

7 Tips

� Start early!

� Read about Java multi-threading and synchronization that is used to synchronize accesses
to shared variables. When multiple threads invoke a method that alters shared variable(s),
you must ensure that the method is declared as synchronized.

� Learn more about Java libraries used to access and manipulate a �le system and its con-
stituent �les/folders.

� Read the package-info provided in each package to understand the package's functionalities
and how to use or integrate it with the other packages.

� For each package of the four packages (i.e., the rmi, naming, storage, and common pack-
ages), it is important to read the respective test �les found under the conformance package.
This will give you an idea on how to design and implement a package.

� Do not defer testing until the end. Test your packages as you go.

Handout continues on the next page(s)

Page 13

8 Rubric

Below is the rubric for the Project. The code (all of the following) accounts for 95% of the �nal
Project 1 grade, and the Design Report accounts for the remaining 5%.

Common Package (10 Points)

•10pts Path class

RMI (40 Points)

• Multi-threaded servers

◦4pts All servers/skeletons should be multi-threaded. No clients should wait while an-
other client is waiting

• SkeletonTest

◦2pts Skeleton unmarshalls variables and marshalls return values correctly

◦5pts Skeleton links to the correct Class object

◦5pts Skeleton dispatches to the correct method for any invocation class

◦6pts Error/Exception checks
• Trivial errors, such as passing null as parameters, should be rejected

• Skeleton should reject RMI methods that do not throw RemoteException

• Skeleton rejects non-matching class parameter and server object

• Stub Test

◦2pts Stub connects to skeleton

◦2pts Stub marshalls all types of arguments correctly and unmarshalls return result

◦3pts Stub can be created at a remote IP address and port

◦3pts Stub can be created with a given skeleton class

◦8pts Error/Exception checks
• Code should check if skeleton has started

• Stub should be created only from an interface

• Cases where interface does not throw RemoteException should be rejected

• Trivial errors, such as passing null as parameters, should be rejected

Handout continues on the next page(s)

Page 14

Storage Server (20 Points)

•10pts Registration Test

◦ Storage server should register to the naming server

◦ Storage server should prune empty directories

•5pts FileAccessTest

◦ Size test
• For Valid �les

• For Invalid �les

• For null args (trivial args)

◦ Read test
• Should not be able to read directories

• Reading empty �le

• null args (trivial args)

◦ Write test
• Write to non-existent �le should be rejected

• Write a directory should be rejected

• null args for �le and/or data (trivial args)

◦ Write-local read
• The �le written through client should be same as local �le stored on disk

◦ Write-Read OutOfBounds
• Read beyond �le size should not be allowed

• Reading negative lengths should not be allowed

• Writing �les with negative o�set should not be permitted

◦ Append test

•5pts Directory tests

◦ File create Test
• Should not be able to create root dir

• File should be created directly under root directory

• Creating directory with null args (trivial case) should not be allowed

• Cannot create �le/dir that is already present

• Check if �le is created with read/write perms

◦ Delete test
• Client should not be able to delete root

• Client should not be able to delete �le/dir with null args (trivial case)

• Client should not be allowed to delete a non-existing �le/dir

• Prune empty directories

Page 15

Naming Server (25 Points)

•1pt Contact tests

◦ Test if naming server has opened one port for registration and one for service

•6pts Registration test

◦ Cannot register with null args (trivial test)

◦ Merge two storage server �le meta data

•6pts List �les

◦ Cannot list with null args (trivial test)

◦ List non-existent �le/dir

◦ Test listing �les/dirs

•6pts Create �les/directory

◦ Cannot create �le/dir with null args (trivial test)

◦ Cannot create root directory

◦ Cannot create �le/dir under parent directory that does not exist

◦ Cannot create a �le/dir with an already existing �le/dir

•6pts Stub retrieval tests

◦ Trivial tests

◦ Start two storage servers with initial set of �les. Retrieve the storage server stub
from naming for those �les. Check and see if they match

Code Style (5 Points)

• Method Comments, Block comments, Readability, Dead code, Code design

Bonus (10 Points)

• Implementation of the Naming Delete functionality

Handout continues on the next page(s)

Page 16

9 Getting Started

� Download the Project 1 Starter Code. This is the framework that you will be modifying.
Unzip the �le. Read the README document. For the complete documentation of the
framework, read the following (preferably in the same order)

� The README �le under the project archive.

� The Implementation section in the project handout.

� The javadoc of the starter code. Note: the make docs-all command creates javadoc
of the starter code.

� Importing code to Eclipse

� Open P1_StarterCode and delete all .class �les under all sub-directories. You can
do this manually or from the command-line, cd to P1_StarterCode and type make
clean.

� Open Eclipse and create a new Java Project (File -> New -> Java Project). Name
the project as Project 1.

� Under Project 1, right click on src and select Import -> File System -> Browse.
Browse to P1_StarterCode and click Ok.

� Check the checkbox next to P1_StarterCode in the left pane and click Finish.

� You'll notice that the class SampleUnitTest.java contains an error (unde�ned class
SampleClassUnderTest). This class does not actually exist, it just demonstrates how
you can write unit tests. Therefore, just comment out all the lines that contain errors.

� Now you should be able to run ConformanceTests.java under the Conformance pack-
age. Of course, you wont pass any of the tests because you haven't implemented
anything yet!

Handout continues on the next page(s)

Page 17

10 Design Report Guidelines

This section aims at getting you a step closer towards your implementation of Project 1. You
must demonstrate that you understand the project's design and starter code, including the
purpose, responsibilities and speci�c implementation details of each package. At the end of the
design document, you should be able to easily commence coding your project components. Your
design report should include the following two sections:

10.1 Project Design

In this section, brie�y answer the four following questions:

� What are the communicating entities?

� What is your communication paradigm?

� What are the roles and responsibilities of each entity (and, accordingly, the dictated ar-
chitecture)?

� How would you place such entities over a heterogeneous distributed infrastructure with
computers and networks of varied computational, storage and communicational powers?

10.2 Project Implementation

Below are some questions you may want to address in your document. Please spend some time
pondering over the above-mentioned questions. They will help you attain a good understanding
of the project and deeper insights into the required implementation. Once �nished with the
design document, you should be able to start the implementation phase with no vagueness or
confusion.

� RMI package:

� What is the purpose of Stub.java and Skeleton.java?

� What methods should you declare and implement in order to achieve the intended
functionalities?

� Which Java class do you use for representing a Stub? How do you use this class?

� Common Package:

� What is a path?

� What is the purpose of each utility function?

� Where would you make use of each utility function?

� Naming Package:

� What is the logic of each method declared in each interface?

� What are the other classes needed in this package (if any)?

� How to create the required Skeletons?

� How to represent the directory tree and the associate meta-data (i.e., which Java
Collection to use)?

� How to deal with invalid paths?

Page 18

� Storage Package:

� What is the logic of each method declared in each interface?

� How to create the required Skeletons and Stubs?

� What happens pre- and post-registration?

� Which Java class do you use for reading and modifying the contents of the temporary
directory?

11 Deliverables

There will be two deliverables:

11.1 Design Report Deliverable

You have to submit the detailed design of the project in this report. The deadline is Sep 17,
2023. The design document should contain the following sections:

1. A brief design of the project deduced from the starter code: The starter code
provides a framework for the project. Identify all the activities that occur in the project
(e.g., Naming Server starts up, Client requests a �le for reading its content, etc). Draw
sequence diagrams of these activities (Note: A sequence diagram is a UML methodology
for representing how objects communicate and in what order). Do not elaborately discuss
the items that are already stated in comments (or java-doc).

2. Description of the logic of the unimplemented functionalities: The starter code
has many unimplemented functionalities. The missing parts are spread over the starter
code. You can identify them by searching for parts of code that throw an
"UnsupportedOperationException". Discuss the logic that you plan to incorporate to
implement these missing functionalities. The description should discuss the logic in detail
(including trivial errors, such as the action taken if a null value is passed as an argument to
a function). Do not elaborately discuss in text; use appropriate �ow-charts and sequence
diagrams, if and when needed.

11.2 Final Deliverable

A zip �le containing the source code. Please adhere to the same package and directory structure
as provided by the framework (i.e., RMI library, Naming Server, and Storage Server, and test
cases in separate directories). If you want to alter this structure (for example, to improve the
framework), please let the instructor know. You need a written approval from the instructor
before modifying the framework. You are; however, free to add �les within the existing packages.

12 Submission

Submit your code using Gradescope.

13 Late Policy

� If you hand in on time, there is no penalty.

� 0-24 hours late = 25% penalty.

Page 19

https://www.gradescope.com/courses/347385

� 24-48 hours late = 50% penalty.

� More than 48 hours late = you lose all the points for this project.

NOTE: You can use your grace-days quota. For more details, please refer to the syllabus.

Page 20

	Project Objective
	FileStack
	Overview
	Functionalities
	Entities, Architecture, and Communication
	Storage Servers - Naming Server Communication
	Client - Naming Server Communication
	Naming Server - Storage Servers Communication
	Client - Storage Servers Communication

	RMI Library
	Interfaces

	Recap
	A Working Example
	Implementation
	The RMI Package
	The Naming Package
	The Storage Package
	The Common Package

	Test Suite
	Tips
	Rubric
	Getting Started
	Design Report Guidelines
	Project Design
	Project Implementation

	Deliverables
	Design Report Deliverable
	Final Deliverable

	Submission
	Late Policy

