
Carnegie Mellon University in Qatar

Distributed Systems

15-440 - Fall 2023

Project 4

Out: November 16, 2023

Due: November 30, 2023

1



Contents

1 Summary & Intended Learning Outcomes 3

2 Project Objectives 3

3 Implementation Guidelines 3

4 Experimentation and Analysis 4

5 Final Deliverables 5

6 Rubric 6

7 Late Policy 6

Page 2



1 Summary & Intended Learning Outcomes

Ray is an active open-source project developed at the University of California, Berkeley. Ray pro-
vides a general-purpose distributed computing framework for scaling Machine Learning models
or workloads and writing parallel and distributed Python applications. It provides fundamental
primitive abstractions that allow taking the existing program and turn it into a distributed one.
It also allows developers to train and deploy models faster and more efficiently. Ray is currently
enjoying wide popularity.

In this project, you will implement the K-Means clustering algorithm using Ray. You will
compare and contrast the performance of your MPI K-Means implementation (from P3) against
your Ray K-Means implementation from this project.

In short, the learning outcomes of this project are as follows:

1. Apply Ray to a popular real problem, namely cluster analysis using K-Means algorithm.

2. Compare and contrast your MPI and Ray implementations of K-Means in terms of per-
formance and development effort.

2 Project Objectives

The overall goal of this project is to get a clear understanding on Ray parallelism and how
different parallel implementations of the same algorithm compare against each other. You will
conduct and analyze some scalability studies on various degrees of parallelism for K-Means. The
project will provide students with: (1) deep insights into how parallelism affects performance in
large-scale settings, and (2) a practical experience augmented with a methodology for solving
clustering problems (and alike) on a distributed system using Ray.

3 Implementation Guidelines

In this project, you will provide a Ray implementation for K-Means with two types of data
sets; a data set of data points and a data set of DNA strands (as was done in P3). Please use
the datasets you generated in P3 to run and test your Ray K-means implementation. For a
complete explanation of the K-Means algorithm, please refer to the write-up of P3.

For this project, use the 4-VM virtual cluster (which can be deemed as a private cloud)
provided to you in P3. We have already installed and tested Ray 2.8.0 for you. Hence, the
clusters are ready to run your Ray code.

Page 3



4 Experimentation and Analysis

After implementing K-Means using Ray, please conduct experiments and report on the following:

• A comparison between your 3 different K-Means implementations (the sequential and the
MPI ones from P3, and the Ray one from this project) in terms of performance and
development effort.

• Two scalability studies; similar to what you did in P3. In particular:

– A scalability study on the number of VMs with a fixed data set size (use only the
data set of the 2D data points for this study). Specifically, use 1, 2, 3 and 4 VMs.

– A scalability study on the number of data points in your data set of the 2D data
points with a fixed number of VMs (e.g., 4). Specifically, use 20 million, 30 million,
and 40 million data points.

• A discussion on:

– Your experience in applying Ray to the K-Means clustering algorithms.

– Your insights concerning the performance trade-offs of MPI and Ray with K-Means.

– Your thoughts on the applicability of K-Means to Ray.

– Your recommendations regarding the usage of Ray for algorithms similar to K-Means.

Page 4



5 Final Deliverables

As final deliverables, you should submit:

1. An archive containing a fully tested and debugged code for your Ray K-Means implementa-
tion. Specifically, you must submit two programs for the K-Means implementation:

(1) points_ray.py

(2) dna_ray.py

They must follow the specifications below:

• Input: (in this order)

– The Input file containing the data
– The Output file containing the data
– Total number of points/strands provided
– Number of clusters
– Number of iterations (if it’s given as 0, your program should stop as necessary)
– l: length of DNA strand (only applies for the DNA strands K-Means implemen-

tations)

∗ Sample program execution:

// Runs K-Means on a dataset of 100 points, 3 clusters,
// and 5 iterations

$ python3 points_ray.py inputFile outputFile 100 3 5

• Output: a file with the following information for each cluster ci (all sepa-
rated by new-lines):

– The final centroid value for ci
– The number of points/strands assigned to the cluster ci

∗ Sample output for 2D points (the above, separated by commas on each line):

// x-coordinate, y-coordinate, number of points

5.212, 9.880, 400
1.511, 3.201, 320
...

2. An article with a maximum of 5 pages (similar to research articles) that presents your
solution, findings, observations and analysis.

Page 5



6 Rubric

Ray K-Means (50 Points)

•25pts K-Means using Ray for 2D data points

• K-Means using Ray for DNA strands.

Details (these are same for DNA and 2D data points versions):
◦1pt The code compiles and runs correctly

◦6pts Create Ray Parallel Tasks Properly

◦6pts The workers and the head nodes apply K-means to their portions of data (adopting
a good mechanism to compute new centroids)

◦6pts The head node receives intermediate data from workers and aggregates the results
of the parallel tasks to calculate the new means

◦3pts The head loops over for a new round

◦3pts Outputting final results and aborting cleanly

Write-up (47.5 Points)

•10pts Performance comparison between sequential, MPI, and Ray with a fixed dataset size

•1.5pts Development effort comparison between sequential, MPI and Ray

•15pts Ray scalability w.r.t 20, 30, 40 million datapoints

•15pts Ray scalability w.r.t 1, 2, 3, 4 VMs

•1.5pts Performance trade-offs between MPI and Ray

•1.5pts Thoughts on the applicability of K-Means to Ray

•1.5pts Recommendations regarding the usage of Ray for algorithms similar to K-Means

•1.5pts Paper structure, level of writing, and language

Code Style (2.5 Points)

• Method Comments, Block comments, Readability, Dead code, Code Design

7 Late Policy

• If you hand in on time, there is no penalty.

• 0-24 hours late = 25% penalty.

• 24-48 hours late = 50% penalty.

• More than 48 hours late = you lose all the points for this project.

NOTE: You CANNOT use your grace-days quota. For details about the quota, please
refer to the syllabus.

Page 6


	Summary & Intended Learning Outcomes
	Project Objectives
	Implementation Guidelines
	Experimentation and Analysis
	Final Deliverables
	Rubric
	Late Policy

