15-440 Distributed Systems Recitation 10: Kmeans

Slides By: Hend Gedawy & Previous TAs

Announcements

- Quiz II Next Sunday
- PS4 Out Due Nov. 12
- **P3** Due Nov. 16

جامہۃ کارنیجی میلوں فی قطر **Carnegie Mellon University Qatar**

Outline

- Project 3 Overview & Kmeans Algorithm
- Kmeans 2D Points
 - Sequential
 - Parallel
- Kmeans DNA Strands

ة *کار نيد*ی ميلون في قطر **Carnegie Mellon University Qatar**

Project 3 Overview

- **Objective:** apply Message Passing Interface (**MPI**), a library standard for writing message passing programs, to a popular real problem, namely **cluster analysis using the k-Means algorithm.**
- Apply k-Means clustering to two different applications (datasets); data points in a 2D plane and DNA strands in biology.
 - You will provide sequential and parallel implementations of the K-Means algorithm
 - dataset as input and K centroids as output.
 - Specifically, you **deliverables** are:
 - Data Generator code for DNA strands
 - Note: Data Generator for 2D points is given
 - Sequential clustering implementation for both data types
 - Parallel implementation for both data types
- You will also conduct and analyze some scalability studies on various degrees of parallelism and data set sizes.

Clustering

• Clustering Algorithm

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters). - Wikipedia

 Clustering is useful for statistical data analysis and machine learning to discover hidden patters, data structures, relationship between data and also detect anomalies or outliers

What's the difference between clustering and classification?

Carnegie Mellon University Oata

Clustering Application Examples

Classify various customers according to their interests which helps with targeted marketing.

Identify which message is spam and which is not.... using the sender address, key terms inside the message and other factors Content Analysis

Classify documents and content according to their categories and search terms

K-Means Objective

Maximize intra-cluster similarity and minimize inter-cluster similarity.

What is "k"?

ة صارنيجي ميلون في قطر **Carnegie Mellon University Qatar**

Image source: https://towardsdatascience.com/k-means-clustering-explained-4528df86a120

K-Means Algorithm Explained

K-means is an iterative process that works by executing the following steps:

- 1. Select centroids (center of cluster) for each of the k clusters.
- 2. Calculate the <u>distance</u> of all data points to the centroids.
- 3. Assign data points to the closest cluster.
- 4. Find the new centroids of each cluster by taking the <u>mean</u> of all data points in the cluster.
- 5. Repeat steps 2,3 and 4 until all points converge and cluster centers stop moving.

Let's see how it works!

Carnegie Mellon University Oata

Choosing K & Initial Centroids

In practice, people often try different values of **k** and see how their results vary.

A poor choice of the **initial centroids** will take <u>longer to</u> <u>converge</u> or may result in <u>bad clustering</u>.

جامعہ کارنیجی سیلوں فی قطر Carnegie Mellon University Qatar

Choosing Initial Centroids – Example Approaches

- Random: pick them randomly from among your data points.
 - Not efficient: it is likely that many of the initial centroids end up in the same cluster.
- "farthest" heuristic: initialize the first centroid randomly, then to initialize the jth centroid to the point whose minimum distance to the preceding centroids is largest.
 - centroids are well spread-out from each other. Let's try it out!
- k-means++: works similar to the "farthest" heuristic, by choosing first centroid randomly, but ...
 - Choose the jth centroid to be the point with probability proportional to the square of its distance to the nearest preceding centroid.
 - Instead of getting points that are at the edges of their true clusters (as in the farthest heuristic approach), you're more likely to get ones near the center of their true clusters.

Least likely third mean

K-Means in Project 3

The main functions you will need are: <u>distance</u> and <u>mean</u>.

- How to calculate the distance between points in a 2D plane?
- How to calculate the distance between DNA strands?
- How to find the mean of points in a 2D plane?
- How to find the mean of DNA strands?

Carnegie Mellon University (

Outline

- Project 3 Overview & Kmeans Algorithm
- Kmeans 2D Points
 - Sequential
 - Parallel
- Kmeans DNA Strands

ة *کار نيدي ميلو*ن في قطر **Carnegie Mellon University Qatar**

Sequential K-Means: (1) Choosing Initial Centroids

Ρ1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P1 P2 P3 P4 P5 P6 **P7** P8 P9 P10 P11 P12 P13 P14 P15 P16

C0	P1	
C1	P6	
C2	Р3	
C3	P9	

Sequential K-Means: (1) Choosing Initial Centroids

Assigned Points

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

Assigned Points

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P1

P6

P3

P9

Assigned Points

P2

P1

C0

C1

C2

C3

Sequential K-Means: For each datapoint-(2) Calculate distance to all centroids (3) Assign it to the closest Cluster

> جامعة کارنيجي ميلود في قطر Carnegie Mellon University Qatar

Assigned Points

 C0

 C1
 P2, P3

 C2
 P1

 C3

Assigned Points

C0	
C1	P2,P3
C2	P1,P4
C3	

P1

P6

P3

P9

Assigned Points

 C0

 C1
 P2, P3

 C2
 P1, P4

 C3
 P5

Assigned Points

P1
P2
Р3
P4
P5
P6
Ρ7
P8
P9
P10
P11
P12
P13
P14
P15
P16

C0	P6, P8, P10, P13
C1	P2, P3, P7, P11
C2	P1, P4, P12, P15, P16
C3	P5, P9, P14

C0

C1

C2

C3

P1

P6

P3

P9

Centroids after iteration 1

C0	<mark>(</mark> P6 + P8 + P10 + P13)/4
C1	(P2 + P3 + P7 + P11)/4
C2	(P1 + P4 + P12 + P15 + P16)/5
C3	<mark>(</mark> P5 + P9 + P14 <mark>)/3</mark>

* P1 + P2 = (x1,y1) + (x2,y2) = (x1+x2, y1+y2)

* P/N = (x/N, y/N)

Sequential K-Means: (4) Recalculating Centroids

P1 P2 P3 P4 P5 P6 P7 **P8** P9 P10 P11 P12 P13 P14 P15 P16

When to Stop?

- Centroids of newly formed clusters don't change much
- Points remain in the same cluster
- Reach a Maximum number of iterations

Carnegie Mellon University Qatar

Outline

• Project 3 Overview & Kmeans Algorithm

• Kmeans – 2D Points

- Sequential
- Parallel
- Kmeans DNA Strands

ة *کار نيدي ميلو*ن في قطر **Carnegie Mellon University Qatar**

How can we parallelize?

جامعہ کارنی جے میلوں فی قطر Carnegie Mellon University Qatar

P1
P2
Р3
Ρ4
Р5
P6
Ρ7
P8
Р9
P10
P11
P12
P13
P14
P15
P16

C0	P1	
C1	P6	
C2	Р3	
C3	P9	

Parallel K-Means: (1) Choosing Initial Centroids

1	P1	
nine	P2	
Jacł	Р3	
2	P4	
2	P5	
hine	P6	
Jacl	Ρ7	
2	P8	
33	P9	
hine	P10	
Иас	P11	
2	P12	
e4	P13	
chin	P14	
Ma	P15	
	P16	

-		
C0	P1	
C1	P6	
C2	Р3	
C3	P9	

Parallel K-Means: (2) Split & Distribute Points to Multiple machines

ة کارنیدی میلوں فی قطر **Carnegie Mellon University Qatar**

Ρ1

P6

Ρ3

Ρ9

C0

C1

C2

C3

جامعۃ کارنیجی میلوں فی قطر Carnegie Mellon University Qatar

Is this sufficient?

Ρ1

P6

Ρ3

Ρ9

C0

C1

C2

C3

Is this sufficient?

No memory sharing

جامعة کارنیجی میلود فی قطر Carnegie Mellon University Qatar

ine1	P1	C0	P1	
	P2	C1	P6	
lach	Р3	C2	Ρ3	
2	P4	С3	Р9	
2	P5	C0	P1	
nine	P6	C1	P6	
Aac ł	Ρ7	C2	Ρ3	
2	P8	C3	Р9	
33	Р9	C0	P1	
nine3	P9 P10	C0 C1	P1 P6	
/achine3	P9 P10 P11	C0 C1 C2	P1 P6 P3	
Machine3	P9 P10 P11 P12	C0 C1 C2 C3	P1 P6 P3 P9	
e4 Machine3	P9 P10 P11 P12 P13	C0 C1 C2 C3 C0	P1 P6 P3 P9 P1	
chine4 Machine3	P9 P10 P11 P12 P13 P14	C0 C1 C2 C3 C0 C1	P1 P6 P3 P9 P1 P6	
Machine4 Machine3	P9 P10 P11 P12 P13 P14 P15	C0 C1 C2 C3 C0 C1 C2	P1 P6 P3 P9 P1 P6 P3	
Machine4 Machine3	P9 P10 P11 P12 P13 P14 P15 P16	C0 C1 C2 C3 C0 C1 C2 C3	P1 P6 P3 P9 P1 P6 P3 P9	

Parallel K-Means: (3) Distribute centroids to all machines

Parallel K-Means: (4) At each machine: calculate distance of each point to each centroid, and assign it to the closest centroid

		Initial	centro	oids/means	Assi	igned Points	Now each machine
	P1		C0	P1	C0	P2,P3	clustered its assigned
ine,	P2		C1	P6	C1	0	points. How to proceed?
lach	P3		C2	Р3	C2	P1	
Σ	P4		C3	P9	C3	P4	
2	P5		C0	P1	C0	P5	
nine	P6		C1	P6	C1	P7	
Ласl	Ρ7		C2	P3	C2	P8	
2	P8		C3	Р9	C3	P6	
ŝ	P9		C0	P1	C0	0	
nine	P10		C1	P6	C1	P12	
Jacl	P11		C2	P3	C2	P10, P11	
2	P12		C3	P9	C3	P9	
le4	P13		C0	P1	C0	P13, P14, P16	
chin	P14		C1	P6	C1	0	
Зa	P15		C2	P3	C2	0	
	P16		C3	P9	C3	P15	د ام م حج ابند د می امر ف م ق

_

ج مح کارتی جے میلود ہی ہے ار Carnegie Mellon University Qatar

		Initial centro	oids/m	neans	lculatin Centro	g new ids	Should each
. [P1	СО	P1	C0	(P2 + P3	3)/2	machine calculate
ine1	P2	C1	P6	C1	0		new centroids?
lach	P3	C2	Р3	C2	P1		
2	P4	C3	Р9	C3	P4		
2	P5	СО	P1	CO	P5		
Jine	P6	C1	P6	C1	P7		
Jach	Ρ7	C2	Р3	C2	P8		
2	P8	C3	Р9	С3	P6		
6	P9	CO	P1	CO	0		
hine	P10	C1	P6	C1	P12		
Jacl	P11	C2	Р3	C2	(P10 + I	P11)/2	
2	P12	C3	Р9	C3	Р9		
e4	P13	СО	P1	CO	(P13 + I	P14 +	
chin	P14	C1	P6		P16)/3		
Ma	P15	C2	Р3	C1	0		
	P16	C3	Р9	C2	0		
L		· · · · · · · · · · · · · · · · · · ·		C3	P15		با ہے تھا کا رائیہ جاری ہیں ہے تو ور ہیں ہے Carnegie Mellon University Qatar

Initial	centroids/	'means
---------	------------	--------

Assigned Points

_	P1	C0	P1	CC)	P2, P3	
ine.	P2	C1	P6	C1	<u> </u>	0	
ach	P3	C2	Р3	C2	2	P1	
Σ	P4	C3	P9	C3	3	Р4	
2	P5	C0	P1	CC)	P5	
hine	P6	C1	P6	C1		Р7	
1ach	Ρ7	C2	Р3	C2	2	P8	
2	P8	C3	P9	C3	3	Р6	
ŝ	Р9	C0	P1	CC)	0	
nine	P10	C1	P6	C1	<u> </u>	P12	
lac	P11	C2	P3	C2	2	P10, P11	
2	P12	С3	Р9	C3	3	Р9	
e4	P13	C0	P1	СС)	P13, P14, P16	
chin	P14	C1	P6	C1	L	0	
Mag	P15	C2	P3	C2	2	0	
	P16	C3	P9	C3	3	P15	
L							جامعت کارتی جیکی میتود قیری قصر Carnegie Mellon University Qatar

		Initial c	entr	oids/	means
	P1		C0	P1	
ine1	P2		C1	P6	
lach	P3		C2	Р3	
2	P4		С3	Р9	
2	P5		C0	P1	
nine	P6		C1	P6	
Jach	P7		C2	Р3	
2	P8		C3	Р9	
33	Р9		C0	P1	
nine	P10		C1	P6	
Jac	P11		C2	Р3	
~	P12		C3	Р9	
le4	P13		C0	P1	
chin	P14		C1	P6	
Ma	P15		C2	P3	
	P16		C3	Р9	

Assigned F **Assigned Points** Machine 1 Machine P2,P3 C0 Ρ5 C0 C1 0 Ρ7 C1 C2 Ρ1 P8 C2 P6 C3 P4 C3

e 2 Machine 3					Assigned Points Machine 4
	C0	0		C0	P13, P14, P16
	C1	P12		C1	0
	C2	P10, P11		C2	0
	C3	Р9		C3	P15

Parallel K-Means: (5) Each machine reports to the master its clustering assignments

Initial centroids/means

C0	(P2 + P3 + P5 + P13 + P14 + P16)/6
C1	(P7 + P12)/2
C2	(P8 + P10 + P11)/3
С3	(P6 + P9 + P15)/3

Parallel K-Means: (6) Master node calculates new centroids

Carnegie Mellon University Qatar

	1	P1		C0	P1
	ine	P2		C1	P6
	lach	P3		C2	P3
	2	P4		С3	P9
	2	P5		C0	P1
	ine	P6		C1	P6
	1ach	Ρ7		C2	P3
	2	P8		C3	P9
			•		And a second
	3	Р9		C0	P1
	nine3	P9 P10		C0 C1	P1 P6
	/achine3	P9 P10 P11		C0 C1 C2	P1 P6 P3
	Machine3	P9 P10 P11 P12		C0 C1 C2 C3	P1 P6 P3 P9
_	e4 Machine3	P9 P10 P11 P12 P13		C0 C1 C2 C3 C0	P1 P6 P3 P9 P1
-	chine4 Machine3	P9 P10 P11 P12 P13 P14		C0 C1 C2 C3 C0 C1	P1 P6 P3 P9 P1 P6
-	Machine4 Machine3	P9 P10 P11 P12 P13 P14 P15		C0 C1 C2 C3 C0 C1 C2	P1 P6 P3 P9 P1 P6 P3

C0	Pc0
C1	Pc1
C2	Pc2
C3	Pc3

Parallel K-Means: (6) Master node calculates new centroids

Pc0 P1 C0 Machine1 C1 Pc1 P2 C2 Pc2 P3 C3 Pc3 P4 P5 C0 Pc0 Machine2 P6 C1 Pc1 P7 Pc2 C2 P8 Pc3 C3 P9 Pc0 C0 Machine3 P10 Pc1 C1 C2 P11 Pc2 P12 C3 Pc3 P13 Machine4 C0 Pc0 P14 C1 Pc1 P15 C2 Pc2 P16 C3 Pc3

Parallel K-Means: (7) Repeat.. Master node distributes new centroids to all machines

> جامعہ کارنیجی میلود فی قطر Carnegie Mellon University Qatar

K-Means in Project 3

The main functions you will need are: <u>distance</u> and <u>mean</u>.

- How to calculate the distance between points in a 2D plane?
- How to calculate the distance between DNA strands?
- How to find the mean of points in a 2D plane?
- How to find the mean of DNA strands?

Outline

- Project 3 Overview & Kmeans Algorithm
- Kmeans 2D Points
 - Sequential
 - Parallel
- Kmeans DNA Strands

ة *کار نيدي ميلو*ن في قطر **Carnegie Mellon University Qatar**

K-Means: DNA Strands

A strand of DNA consists of a string of molecules called bases, where the possible bases are adenine (A), guanine (G), cytosine (C), and thymine (T).

> Given a list of strands, How to cluster them using K-means?

> > Specifically,

How to find the centroid (mean) of a set of points?

How to calculate the distance of a point to a centroid?

Carnegie Mellon University Oatar

ACTG GTCA SGGT TAAA ATAT

K-Means: DNA Strands Point-Centroid Distance

ACTG GTCA SGGT TAAA ATAT

The distance between two strands is the number of changes required to turn one strand into the other.

E.g. distance between ACTG and ATAT= 3

Carnegie Mellon University Qatar

ACTG
GTCA
SGGT
TAAA
ATAT

How to get the

centroid (mean) of these DNA strands?

جامعة کارنيجي ميلود في قطر Carnegie Mellon University Qatar

How many repetitions of A in index 0 of all strands

	-				
ACTG		A			
GTCA		С			
SGGT		G			
TAAA		Т			
ATAT		Output strand			

Carnegie Mellon University Qatar

ACTG
GTCA
SGGT
TAAA
ATAT

А	2		
С			
G			
Т			
Output strand			

امیج خ کارنیدی میلمن فی قطر **Carnegie Mellon University Qatar**

ACTG
GTCA
SGGT
TAAA
ATAT

Α	2	1	2	1
C	0	1	1	0
G	1	1	1	1
Т	1	2	1	2
Output strand				

مجح کارنیدی میلمی فی قط **Carnegie Mellon University Qatar**

ACTG
GTCA
SGGT
TAAA
ATAT

A	2	1	2	1
C	0	1	1	0
G	1	1	1	1
Т	1	2	1	2
Output strand				

Get the mean or the median (For each Index, sort the values and select the middle one)

ة کارنىچى مىلمر فى قطر **Carnegie Mellon University Qatar**

ACTG

GTCA

SGGT

TAAA

ATAT

Get the mean or the median (For each Index, sort the values and select the middle one)

	Index 0		Index 1		Index 2		Index 3	
	С	0	А	1	С	1	С	0
	G	1	C	1	G	1	А	1
1	Т	1	G	1	Т	1	G	1
	А	2	Т	2	А	2	Т	2

Median Strand: GCGA

میچت کارنیدی میلون فی قطر **Carnegie Mellon University Qatar**

جامعة کارنیجی میلود فی قطر Carnegie Mellon University Qatar