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Outline
• Project 3 Overview & Kmeans Algorithm

• Kmeans – 2D Points 
• Sequential

• Parallel

• Kmeans – DNA Strands



Project 3 Overview
• Objective: apply Message Passing Interface (MPI), a library standard for writing message passing 

programs, to a popular real problem, namely cluster analysis using the k-Means algorithm.

• Apply k-Means clustering to two different applications (datasets); data points in a 2D plane and 
DNA strands in biology.
• You will provide sequential and parallel implementations of the K-Means algorithm

• dataset as input and K centroids as output.

• Specifically, you deliverables are:

• Data Generator code for DNA strands

• Note: Data Generator for 2D points is given 

• Sequential clustering implementation for both data types 

• Parallel implementation for both data types

• You will also conduct and analyze some scalability studies on various degrees of parallelism and 
data set sizes.



Clustering

• Clustering Algorithm

• Clustering is useful for statistical data analysis and machine learning 
to discover hidden patters, data structures, relationship between data 
and also detect anomalies or outliers

Cluster analysis or clustering is the task of 
grouping a set of objects in such a way that objects 

in the same group (called a cluster) are more 
similar (in some sense) to each other than to those 

in other groups (clusters).
- Wikipedia

What’s the difference between clustering and classification?



Clustering Application Examples

Classify documents 
and content according 
to their categories and 

search terms

Classify various customers 
according to their 

interests which helps with 
targeted marketing.

Identify which message is 
spam and which is not…. 
using the sender address, 

key terms inside the 
message and other factors



Image source:
https://towardsdatascience.com/k-means-clustering-explained-4528df86a120

K-Means Objective

Maximize intra-cluster similarity and 

minimize inter-cluster similarity.

What is “k”?



K-Means Algorithm Explained
K-means is an iterative process that works by executing the following 
steps:

1. Select centroids (center of cluster) for each of the k clusters. 

2. Calculate the distance of all data points to the centroids.

3. Assign data points to the closest cluster.

4. Find the new centroids of each cluster by taking the mean of all 
data points in the cluster.

5. Repeat steps 2,3 and 4 until all points converge and cluster centers 
stop moving.

Let’s see how it works!

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/


Choosing K & Initial Centroids

In practice, people often try 
different values of k and 

see how their results vary.

A poor choice of the initial 
centroids will take longer to 

converge or may result in 
bad clustering. 



Choosing Initial Centroids – 
Example Approaches
• Random: pick them randomly from among your data points. 

• Not efficient: it is likely that many of the initial centroids end up in the same cluster.

• "farthest" heuristic: initialize the first centroid randomly, then to initialize the jth 
centroid to the point whose minimum distance to the preceding centroids is largest. 

• centroids are well spread-out from each other. 

• k-means++: works similar to the "farthest" heuristic, by choosing first centroid 
randomly, but … 

Credit:
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
https://learn.microsoft.com/en-us/archive/msdn-magazine/2015/august/test-run-k-means-data-clustering 
 

Let’s try it out!

• Choose the jth centroid to be the point with probability proportional to 
the square of its distance to the nearest preceding centroid.

• Instead of getting points that are at the edges of their true clusters (as in 
the farthest heuristic approach), you're more likely to get ones near the 
center of their true clusters.

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
https://learn.microsoft.com/en-us/archive/msdn-magazine/2015/august/test-run-k-means-data-clustering
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/


K-Means in Project 3

The main functions you will need are: distance and mean.

• How to calculate the distance between points in a 2D plane?

• How to calculate the distance between DNA strands?

• How to find the mean of points in a 2D plane?

• How to find the mean of DNA strands?



Outline
• Project 3 Overview & Kmeans Algorithm

• Kmeans – 2D Points 
• Sequential

• Parallel

• Kmeans – DNA Strands
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Sequential K-Means: 
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Assigned Points
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Sequential K-Means: 
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Assigned Points
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* P/N = (x/N,y/N)

Sequential K-Means:
(4) Recalculating 
Centroids

* P1 + P2 = (x1,y1) + (x2,y2) = (x1+x2, y1+y2)

Initial centroids/means
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When to stop?

Sequential K-Means:
(5) Repeat….

Centroids after iteration 1



When to Stop?

• Centroids of newly formed clusters don’t change much

• Points remain in the same cluster

• Reach a Maximum number of iterations
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• Parallel
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How can we 
parallelize?
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No memory sharing

Is this sufficient?
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Parallel K-Means:
(3) Distribute centroids 
to all machines
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Parallel K-Means:
(4) At each machine:
calculate distance of each 
point to each centroid, 
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Should each 
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Parallel K-Means:
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K-Means in Project 3

The main functions you will need are: distance and mean.

• How to calculate the distance between points in a 2D plane?

• How to calculate the distance between DNA strands?

• How to find the mean of points in a 2D plane?

• How to find the mean of DNA strands?



Outline
• Project 3 Overview & Kmeans Algorithm

• Kmeans – 2D Points 
• Sequential

• Parallel

• Kmeans – DNA Strands
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TAAA

ATAT

A strand of DNA consists of a string of molecules 

called bases, where the possible bases are

 adenine (A), guanine (G), cytosine (C), and thymine (T).

K-Means: DNA Strands

Given a list of strands,
How to cluster them using K-means?

Specifically,

How to find the centroid (mean) of a set of points?

How to calculate the distance of a point to a centroid?



ACTG

GTCA

SGGT

TAAA

ATAT

K-Means: DNA Strands
Point-Centroid Distance

The distance between two strands is

the number of changes required to turn one 

strand into the other.

E.g. distance between ACTG and ATAT= 3



ACTG

GTCA

SGGT

TAAA

ATAT

How to get the 
centroid (mean) of 
these DNA strands?

K-Means: DNA Strands
Calculating Centroid (mean)
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A
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G

T

Output 
strand

How many repetitions of A in 
index 0 of all strands

K-Means: DNA Strands
Calculating Centroid (mean)
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K-Means: DNA Strands
Calculating Centroid (mean)



ACTG

GTCA

SGGT

TAAA

ATAT

A 2 1 2 1

C 0 1 1 0

G 1 1 1 1

T 1 2 1 2

Output 
strand

K-Means: DNA Strands
Calculating Centroid (mean)
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GTCA

SGGT

TAAA

ATAT

A 2 1 2 1

C 0 1 1 0

G 1 1 1 1

T 1 2 1 2

Output 
strand

Get the mean or the median 
(For each Index, sort the values and select the 

middle one)

K-Means: DNA Strands
Calculating Centroid (mean)
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C 0 A 1 C 1 C 0

G 1 C 1 G 1 A 1

T 1 G 1 T 1 G 1

A 2 T 2 A 2 T 2

Get the mean or the median 
(For each Index,

sort the values and select 
the middle one)

K-Means: DNA Strands
Calculating Centroid (mean)

A 2 1 2 1

C 0 1 1 0

G 1 1 1 1

T 1 2 1 2

Unsorted

Index 0 Index 1 Index 2 Index 3

Median Strand: GCGA
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