
15-440
 Distributed Systems

Recitation 1

Slides by: Hend Gedawy
& Tamim Jabban

Please open https://pollev.com/hendgedawy084

Office Hours

 Office 1016, Zoom

 Sunday, Thursday: 10:00 – 12:00 PM

 Appointment: send an e-mail

 Piazza, Open door policy

Logistics
• PS1 is out on the course website (due on Sep. 3) submit on

Gradescope

Big Picture

Recitation 1:
Java Concepts

PROJECT 1

Problem Set 1:
Java Concepts,
Thread, Socket
Programming

Recitation 2:
Java Threads
and Socket

Programming

Recitation 3:
Project 1

Outline

• Introduction
• OOP Structure
• OOP Principles
• More Java Concepts

Java Object Oriented Programming (OOP)

Presenter Notes
Presentation Notes
LinkedIn job posts in USA and Europe; as of 2022, Java is still highly required

Java Introduction

• A class-based, object-oriented programming (OOP) language
• The syntax of Java is similar to C/C++
• Eliminates complex features like pointers and explicit memory

allocation and deallocation (garbage collection)

Presenter Notes
Presentation Notes
Java is a class based OOP language
This means it is a programming model that organizes software design around data, or objects, rather than functions and logic

it is not that low level
So all the memory allocations, deallocation, pointers, all is taken care of

Java Introduction

• Platform-independent write once run anywhere
• Compiler converts source code to bytecode and then the JVM executes the bytecode

generated by the compiler

• Javac compiler generate byte code can run on any Java Virtual Machine

JVM
Interpreter

Javac
Compiler

Presenter Notes
Presentation Notes

With C for example, the compiler will generate machine code directly so you don’t have this flexibility

Java Introduction: Language Constructs
• Variables
• Datatypes

• Primitive
• boolean, char, byte, short, int, long, float,

double
• Non-primitive

• String, Array, Classes
• Operators
• Flow Control

• If, switch-case, break, continue
• Loops

• For, while, for-each loop

• Regular Arrays [] - Immutable (cannot grow)
• Declaring: type var-name[]; OR type[] var-name;

• E.g.: int ages[]; OR int[] ages;
• Assigning: var-name = new type [size];

• E.g.: ages= new int[10];
• All elements set to their default value (0 or null)

• Dynamic (resizable) Arrays: ArrayLists
• Don’t have to specify the size of the ArrayList at

the time of creation
• Declaring: ArrayList<type> var-name;

• E.g. : ArrayList<int> ages;
• Assigning: var-name= new ArrayList<>();

• E.g.: ages= new new ArrayList<>();
• Later you can add elements using .add() method

• Strings
• Other classes
• Naming conventions

Presenter Notes
Presentation Notes
regular arrays in Java cannot grow
You have to specify the size during creating
However, there is another type of array that is dynamic, it is called ArrayLists
You don’t have to specify the size when you create them
You can always use the add method to allocate space and add the new element you want to add

https://www.oracle.com/java/technologies/javase/codeconventions-namingconventions.html

Outline

• Introduction
• Java OOP Structure

• Class
• Object
• Attributes
• Methods

• Java OOP Core Principles
• More Java Concepts

Presenter Notes
Presentation Notes
the four main building blocks of OOP

Java OOP: Structure

1) Class

4) Object

2) Attributes

3) Methods

Presenter Notes
Presentation Notes
A class: which is a blueprint that defines
This class has Attributes or variables that describe state
And methods representing bvehaviour

We can create different object or instances using that blueprint and
Define for each object its own customized attributes/state and behavior

Java OOP Structure: Class
• A user defined blueprint or prototype from which objects are created
• Represents the set of properties or methods that are common to all

objects of one type

Presenter Notes
Presentation Notes

“Class” is a blueprint from which we can create object(s).
The “public” is an access modifier, more on that later.
No attributes or behavior so this is not very useful!

Java OOP Structure: Object
• An Object consists of

• State: represented by attributes of an object
• Behavior: represented by methods of an object.

• When an object of a class is created, the class is said to
be instantiated.

• All the instances (objects of a class) share the attributes and the
behavior of the class. But the values of those attributes, i.e. the state
are unique for each object.

Java OOP Structure: Object

 How to create an Object of a Class?

Java OOP Structure: Object
• The new operator instantiates a class by allocating memory for a new

object and returning a reference to that memory.
• To create an Dog Object:

Dog tuffy = new Dog("tuffy","papillon",5, "white");

Constructor

Java OOP Structure: Object Constructors
• A Java constructor is special method that is called when an object is

instantiated
• Constructors take in zero or more variables to create an Object
• Constructors have the same name as the class and have no return

type
• All classes have at least one constructor.

• If a class does not explicitly declare any, the Java compiler automatically
provides a no-argument constructor, also called the default constructor.

public class Dog
{

// Instance Variables
String name;
String breed;
int age;
String color;

// Constructor Declaration of Class
public Dog(String name, String breed,

int age, String color)
{

this.name = name;
this.breed = breed;
this.age = age;
this.color = color;

}

// method 1

What is this?

Dog tuffy = new Dog("tuffy",
"papillon", 5, "white");

public class MainClass
{

public static void main(String[] args) {

Presenter Notes
Presentation Notes
The this keyword refers to the current object in a method or constructor.
The most common use of the this keyword is to eliminate the confusion between class attributes and parameters with the same name (because a class attribute is shadowed by a method or constructor parameter).

public class Dog
{

// Instance Variables
String name;
String breed;
int age;
String color;
// Constructor 1
public Dog(String name, String breed,

int age, String color)
{

this.name = name;
this.breed = breed;
this.age = age;
this.color = color;

}
// Constructor 2
public Dog(String name, String breed)
{

this.name = name;
this.breed = breed;
this.age = 0;
this.color = "Black";

}

Constructor overloading is
their most useful

functionality

More on that Later!

Presenter Notes
Presentation Notes
Constructor overloading

Java OOP Structure:
Object & Class Variables
• Each Dog object has its own size, age, etc…

• size and age are examples of Object Variables.

• When an attribute should describe an entire class of objects
instead of a specific object, we use Class Variables (or
static Variables).

• There’s only one copy of class variables for the entire class,
regardless of how many objects are created from it.

• Called/retrieved using the class name

Java OOP Structure:
Object & Class Variables

public class Dog {
public static final String currentPlanet = “EARTH”;

}
What’s wrong?

public class Test() {
public static void main(String[] args) {

Dog foobar = new Dog();
String planet = foobar.currentPlanet;

}
}

Presenter Notes
Presentation Notes
We define the current plant variable to be a class variable by using the keyword static.
Final means that the value can’t change

Now say that we want to retrieve the value of this variable in another class.
Is this the correct way to do it?

Java OOP Structure:
Object & Class Variables

public class Dog {
public static final String currentPlanet = “EARTH”;

}

public class Test() {
public static void main(String[] args) {

Dog foobar = new Dog();
String planet = Dog.currentPlanet;

}
}

Outline

• Introduction
• Java OOP Structure

• Class
• Object
• Attributes
• Methods

• Java OOP Core Principles
• Inheritance
• Encapsulation
• Abstraction
• Polymorphism

• More Java Concepts

Presenter Notes
Presentation Notes
the four core principles of OOP ..

Java OOP: Core Principles

Inheritance

Java OOP Principles: Inheritance
• Enables one class to inherit methods (behavior) and attributes from

another class.

• It extends the functionality of that other class

Presenter Notes
Presentation Notes
When you find that a new object you want is a lot like an object you already have.
Then you can make it inherit attributes or method from that class.

class Animal{
void eat(){ System.out.println("eating..."); }

}

class Dog extends Animal{
void bark(){ System.out.println("barking..."); }

}

Superclass

Subclass

Animal

Dog

Parent

Child

class TestInheritance{
public static void main(String args[]){
Dog d = new Dog();
d.bark();
d.eat();

}

Presenter Notes
Presentation Notes
We use the keyword extends to make a class inherit methods from another class
In this case Dog can inherit attributes and behaviour of an Animal

We call Animal in that case a super class and dog a subclass or a parent and child class

Now if we create a Dog instance and try to call the method eat on it, this will work because Dog already inherited that method from Animal

Java OOP Principles: Inheritance
• This introduces subclasses and superclasses.
• A class that inherits from another class is called a subclass:

• Dog inherits from Animal, and therefore Dog is a subclass.

• The class that is inherited is called a superclass:
• Animal is inherited, and is the superclass.

Animal

Dog Snake

Java OOP Principles: Inheritance
• Organizes related classes in a hierarchy:

• This allows reusability and extensibility of common code

• Subclasses inherit all the methods of the superclass
(excluding constructors and privates)

• Subclasses can override methods from the superclass
(more on this later)

• i.e. customize implementation of inherited methods

Java OOP Principles: Inheritance (Casting)

Animal

Dog Snake

a = d; is Legal (A Dog is an Animal)
But

d = a; is Illegal (An Animal isn’t necessarily a Dog)

Dog d = new Dog(); Snake s = new Snake();

Animal a = new Animal();

There are ways to safely UpCast and DownCast:
Beyond the scope of this recitation.

But you can learn more.

https://www.javatpoint.com/upcasting-and-downcasting-in-java

Java OOP: Core Principles

Inheritance

Encapsulation

Java OOP Principles: Encapsulation

Encapsulation is Restricting Access To ….

Java OOP Principles: Encapsulation
Access modifiers describe the accessibility (scope) of data like:

• Attributes (Vartiables):

 public String name;

• Methods & Constructors:

public String getName() { … }

 private Student(String name, int sAge) { … }

Java OOP Principles: Encapsulation

……………
Class

1A
Class

1B
Class

2A
Class

2B

World
Package 1 Package 2

SSubClass
1A

SubClass
1A

…… ……

Accessibility Scope

A package is a group of related classes that serve a common purpose.

Java OOP Principles: Encapsulation

……………
Class

1A
Class

1B
Class

2A
Class

2B

World
Package 1 Package 2

SSubClass
1A

SubClass
1A

…… ……

Access
Modifier

Same Class OR
Subclass – same package

Same Package Subclass-
different Package

World (Any class,
all packages)

Public

Protected

Default

Private

We Use 4
Different

Access
Modifiers to

Define
Accessibility

Scope

Java OOP Principles: Encapsulation

……………
Class

1A
Class

1B
Class

2A
Class

2B

World
Package 1 Package 2

SSubClass
1A

SubClass
1A

…… ……

Access
Modifier

Same Class OR
Subclass – same package

Same Package Subclass –
different Package

World (Any class, All
packages)

Public Y Y Y Y

Protected

Default

Private

Public
Access

If we want to encapsulate this class or data/methods in this class

Java OOP Principles: Encapsulation
package p2;

import p1.*;

class RecNew

{

public static void main(String args[])

{

// Accessing Rec from package p1

Rec obj = new Rec();

obj.display();

}

}

package p1;

class Rec
{

public void display()
{

System.out.println(“Hi!");
}

}

Prints “Hi!”

Presenter Notes
Presentation Notes
The public access modifier has the widest scope among all other access modifiers.
Classes, methods, or data members that are declared as public are accessible from everywhere in the program. There is no restriction on the scope of public data members.

Java OOP Principles: Encapsulation

……………
Class

1A
Class

1B
Class

2A
Class

2B

World
Package 1 Package 2

SSubClass
1A

SubClass
1A

…… ……

Access
Modifier

Same Class OR
Subclass – same package

Same Package Subclass –
Different Package

World (Any class, all packages)

Public Y Y Y Y

Protected Y Y Y N

Default

Private

Protected
Access

If we want to encapsulate this class or data/methods in this class

Java OOP Principles: Encapsulation
package p2;

import p1.*;

class RecNew extends Rec

{

public static void main(String args[])

{

// Accessing Rec from package p1

RecNew obj = new RecNew();

obj.display();

}

}

package p1;

class Rec
{

protected void display()
{

System.out.println(“Hi!");
}

}

Prints “Hi!”

Java OOP Principles: Encapsulation

……………
Class

1A
Class

1B
Class

2A
Class

2B

World
Package 1 Package 2

SSubClass
1A

SubClass
1A

…… ……

Access
Modifier

Same Class OR
Subclass – same package

Same Package Subclass – Different
Package

World (Any class, all
packages)

Public Y Y Y Y

Protected Y Y Y N

Default Y Y N N

Private

Default
Access

If we want to encapsulate this class or data/methods in this class

Java OOP Principles: Encapsulation
package p2;

import p1.*;

class RecNew

{

public static void main(String args[])

{

// Accessing Rec from package p1

Rec obj = new Rec();

obj.display();

}

}

package p1;

class Rec
{

void display()
{

System.out.println(“Hi!");
}

}

Error

Presenter Notes
Presentation Notes
When no access modifier is specified for a class, method, or data member – It is said to be having the default access modifier by default.
Methods having default access modifier are accessible only within the same package.

Java OOP Principles: Encapsulation

……………
Class

1A
Class

1B
Class

2A
Class

2B

World
Package 1 Package 2

SSubClass
1A

SubClass
1A

…… ……

Access
Modifier

Same Class OR
Subclass – same package

Same Package Subclass – different
package

World (Any class,
all packages)

Public Y Y Y Y

Protected Y Y Y N

Default Y Y N N

Private Y N N N

Private
Access

If we want to encapsulate this class or data/methods in this class

Java OOP Principles: Encapsulation
package p2;

import p1.*;

class RecNew extends Rec

{

public static void main(String args[])

{

// Accessing Rec from package p1

RecNew obj = new RecNew();

obj.display();

}

}

package p1;

class Rec
{

private void display()
{

System.out.println(“Hi!");
}

}

Error!

Presenter Notes
Presentation Notes
The private keyword is an access modifier used for attributes, methods and constructors, making them only accessible within the declared class.

Java OOP Principles: Encapsulation

If a data is encapsulated,
 how can we change it or access outside the

accessibility scope?

Java OOP Principles: Encapsulation
• Using getters and setters:

Why would we do that?

public class Animal {
private String name;
private int age;

public void setName(String newName)
{

this.name = newName;
}
public String getName() {

return name;
}

}

public class MainClass {

public static void main(String args[]) {

Animal foobar = new Animal();
foobar.setName(“Foo Bar”);

Presenter Notes
Presentation Notes
 setters and getters gives you centralized control of how a certain field is initialized and provided to the client,
which makes it much easier to verify and debug

Java OOP: Core Principles

Inheritance

Encapsulation

Abstraction

Java OOP Principles: Abstract Classes
• A class that is not completely implemented.
• Contains one or more abstract methods (methods with no bodies; only signatures) that

subclasses must implement
• Cannot be used to instantiate objects

Presenter Notes
Presentation Notes
abstract class is a class that has at least one method not implemented
And it should be implemented by subclasses or children of that class

Java OOP Principles: Abstract Classes

Project 1 Example

Abstract Class Header:
 accessModifier abstract class className

Abstract Method signature:

Subclass Signature:
 accessModifier class subclassName extends className

accessModifier abstract returnType methodName (args);

Syntax of defining and using abstract Classes/Methods

Presenter Notes
Presentation Notes
We have an abstract class called Test with an abstract method to perform() tests

This is one of the classes that extend Test;
	there are many and each one has an implementation for perform to test a different component in the code

Java OOP Principles: Interfaces
• A special abstract class in which all the methods are abstract
• Contains only abstract methods that subclasses must implement
• All fields in an interface are automatically public, static, and final
• All methods that you declare or define (as default methods) are public
• An interface can extend other interfaces

Presenter Notes
Presentation Notes
Abstract classes are similar to interfaces. You cannot instantiate them, and they may contain a mix of methods declared with or without an implementation.

However, with abstract classes, you can declare fields that are not static and final, and define public, protected, and private concrete methods.

Java OOP Principles: Interfaces

Project 1
Example

list of
methods
defined in
the interface

list of
methods
defined in
the interface

list of
methods
implemented
in the class

Interface header:
 accessModifier interface interfaceName
Abstract method signature in the interface:
 accessModifier abstract returnType methodName (args);
Subclass signature:
 accessModifier class subclassName implements someInterface

Methods
declared as
abstract

Syntax of defining and using interfaces & their abstract methods

Java OOP: Core Principles

Inheritance

Encapsulation

Abstraction

Polymorphism

Java OOP Principles: Polymorphism
• Polymorphism means “Many Forms”
• It is applied to methods to decide what form of method to execute

on different classes that are related to each other by Inheritance.

Presenter Notes
Presentation Notes
Java when two objects are related by inheritance, then each one can have a different form to execute the methods of the superclass

Java OOP Principles: Polymorphism
Problem Set 1 Exercise:

Presenter Notes
Presentation Notes
There is a class called Racer
Then we have subclasses called tortoise and hare

Now notice that each subclass has a different impelementation for the method move()

Outline
• Introduction
• Java OOP Structure

• Class
• Object
• Attributes
• Methods

• Java OOP Core Principles
• Inheritance
• Encapsulation
• Abstraction
• Polymorphism

• More Java Concepts
• Overloading Methods
• Overriding Methods
• Generic Classes
• Generic Collections

More Java Concepts

Overloading & Overriding Methods

Java OOP: Overloading Methods
• Methods overload one another when they have the same method name

but:
• The number of parameters is different for the methods
• The parameter types are different (i..e. different signatures)

• Example:
public void changeDate(int year) {

// do cool stuff here
}

public void changeDate(int year, int month) {
// do cool stuff here

}

Why would we do that?

Presenter Notes
Presentation Notes
Method overloading increases the readability of the program.
This provides flexibility to programmers so that they can call the same method for different types of data.

Java OOP: Overloading Methods
• Methods overload one another when they have the same method name but:

• The number of parameters is different for the methods

• The parameter types are different (i..e. different signatures)

• Another Example:
public void addSemesterGPA(float newGPA) {

// process newGPA
}

public void addSemesterGPA(double newGPA) {
// process newGPA

}

Java OOP: Overloading Methods
• Methods overload one another when they have the same method name but:

• The number of parameters is different for the methods

• The parameter types are different (i..e. different signatures)

• Another Example:
public void changeDate(int year) {

// do cool stuff here
}

public void changeDate(int month) {
// do cool stuff here

}

Java OOP: Overloading Methods
• Methods overload one another when they have the same method name but:

• The number of parameters is different for the methods

• The parameter types are different

• Another Example:
public void changeDate(int year) {

// do cool stuff here
}

public void changeDate(int month) {
// do cool stuff here

}

We can’t overload
methods by just
changing the
parameter name!

Java OOP: Overloading Methods

Project 1
Example

Constructor
Overloading

Java OOP: Overriding Methods

Presenter Notes
Presentation Notes
Overriding means that we change the implementation of a method

Java OOP: Overriding Methods
•Example:

public class ClassA {
public Integer someMethod() {

return 3;
}

}

public class ClassB extends ClassA {

// this is method overriding:
public Integer someMethod() {

return 4;
}

}

Example use case?

Presenter Notes
Presentation Notes
We use it when the class has methods that is common to most of its sublasses
While giving flexibility for some sublasses to change the method and have their own specific implementation

it allows a general class to specify methods that will be common to all of its derivatives
while allowing subclasses to define the specific implementation of some or all of those methods.

Java OOP: Overriding Methods
• Any class extends the Java superclass “Object”.
• The Java “Object” class has 3 important methods:

• public boolean equals(Object obj);

• public int hashCode();

• public String toString();

• The hashCode is just a number that is generated by any object:
• It shouldn’t be used to compare two objects!
• Instead, override the equals, hashCode, and toString methods.

Object

Animal Car …

Presenter Notes
Presentation Notes
In java Object is the superclass or parent class of any class

there are standard METHODS THAT ANY class you create CAN OVERRIDE
Like quals, hashCode and toString()

hashCode is used in contexts such as hashmaps/tables/sets and bucketing.

Java OOP: Overriding Methods
• Example: Overriding the toString and equals methods in our

 Dog class:
public class Dog {

 …

 public String toString() {

 return this.name;

 }

}

Presenter Notes
Presentation Notes
I could choose in the Dog class to change the toString() method

Java OOP: Overriding Methods
• Example: Overriding the toString and equals

methods in our Dog class:

public class Dog {
…
public boolean equals(Object obj) {

if (obj.getClass() != this.getClass()))
return false;

else {
Dog s = (Dog) obj;
return (s.getName().equals(this.name));

}
}

}

Presenter Notes
Presentation Notes
Or I can choose to change how equals method is defined

Java OOP: Overriding Methods
(Super and Subclasses)
class Animal{

void eat(){ System.out.println(“Animal eating..."); }
}

class Dog extends Animal{
void eat(){ System.out.println(“Dog eating..."); }

void bark(){ System.out.println("barking..."); }
}

What’s the output?

class TestInheritance{
public static void main(String args[]){
Animal a= new Animal();
Dog d = new Dog();
a.eat();
d.eat();
a=d;
a.eat();

}

Presenter Notes
Presentation Notes
There is also subclass overriding superclass methods as we mentioned earlier
So for example,

Eventhough Dog inherits eat() method from its Animal parent class
It can override the method

If we create an instance of the Animal and Dog classes
Now what should be the output of calling eat in these three places?

More Java Concepts

Generic Methods, Classes and Collections

<T>

Java OOP: Generic Classes&Methods

What if you want to create a class or a
method that works for different data types

instead of creating a class or a method for
each data type

Presenter Notes
Presentation Notes

Java OOP: Generic Classes&Methods
• “Object” is the inherent super-type of all types in Java

• So, would using “Object” work?

public class Box {
private Object attribute;

public void set(Object object) {

this. attribute = object;
}
public Object get() {

return attribute;
}

}

What’s the problem?

Presenter Notes
Presentation Notes
We said that Object is a super class of all java classes

Now imaging I defined the attributes of my class to be of type object and
My methods to accept Object parameters and return Object type

So theoretically this should work right??

Everything is an Object, There is no way to verify, at compile time, how the class is used.
 One part of the code may place an Integer in the box and expect to get Integers out of it, while another part of the code may mistakenly pass in a String, resulting in a runtime error.
 Type checking is weaker.

Java OOP: Generic Classes&Methods
• Solution:

• Generic or parameterized classes/methods receive the data-type of elements
as a parameter

• Generics allow Code Reuse and ensure Type Safety

• A generic class is defined with the following format:

 class my_generic_class <T1, T2, ..., Tn> {

 /* ... */

 } Type parameters

Presenter Notes
Presentation Notes
A Java compiler applies strong type checking to generic code and issues errors if the code violates type safety. Fixing compile-time errors is easier than fixing runtime errors, which can be difficult to find.

Java Generic methods and generic classes enable programmers to specify, with a single method declaration, a set of related methods, or with a single class declaration, a set of related types, respectively.
�
Generics in Java can make it easier to reuse code, which is another significant benefit. Developers can design generic classes and methods that can be utilised with a variety of different data types by utilising generics.
�

Java OOP: Generic Classes&Methods
• Now to make our Box class generic:
public class Box<T> {

// T stands for "Type"
private T t;
public void set(T t) {

this.t = t;
}
public T get() {

return t;
}

}

To create, for example, an Integer “Box”:

Box<Integer> integerBox;

Generic
class

Generic
method

Presenter Notes
Presentation Notes
Int is a primitive type
Integer is an Object that you can call methods on it

Java OOP: Generic Classes&Methods

Example from
Project 1

interfaces

Presenter Notes
Presentation Notes
Example from Project 1

In the given code, a generic class called Skeleton and has a generic type T
Which is used in the constructor

Now you will see that in another class calls, we are able to use the constructor method passing arguments of different data types

Java OOP: Generic Collections
• Classes that represent data-structures

• Generic or parameterized since the elements’ data-type is given as a parameter

• E.g.: LinkedList, Queue, ArrayList, HashMap, Tree

• They provide methods for:

• Iteration

• Bulk operations

• Conversion to/from arrays

Presenter Notes
Presentation Notes
We also have what is called generic collections
Which are classes of data structures where the types of the elements is generic

Java OOP: Generics Symbols

•T – Type
•E – Element
•K – Key
•N – Number
•V – Value

Bounded Type
Parameters

More on Generics.

Wildcard <?>

They restrict the type
that can be used

<?> says there is some type that
we don’t know (Unbounded)
Can be used as the type of a

parameter, field, or local variable;
sometimes as a return type.

public class Animal{
public Animal(){}

}
public class Dog extends Animal{

public Dog(){}
}

Animal

Dog

Accepts Animal and
all its subclasses

Accepts Dog and all its
superclasses

Accepts all MainClass

Presenter Notes
Presentation Notes
You saw in the previous examples different symbols used for generic types
So there are these symbols
Which allow only specific types of data

And there is this question mark or what is called wild card symbol
This symbol says the type is unbounded but it can be used in specific circumstances

So if look at the Animal Dog example again

So imagine, I created a list for animals
And a list for Dogs

I actually can pass these lists to methods using the wild card in different ways

https://docs.oracle.com/javase/tutorial/java/generics/bounded.html
https://docs.oracle.com/javase/tutorial/java/generics/index.html
https://docs.oracle.com/javase/tutorial/java/generics/index.html
https://docs.oracle.com/javase/tutorial/java/generics/wildcards.html

More Java Concepts

Try-Catch-Finally
To handle Exceptions that might arise in a piece of Code:

• Write the code within a try block followed by one or
more catch blocks

• Each catch block is an exception handler that handles the
type of exception indicated by its argument.

• Adding clean up code in a finally block is a good practice.
• It always executes
• Allows programmer to avoid having cleanup code

accidently bypassed by a return, continue or break Photo credit: https://howtodoinjava.com/java/exception-
handling/try-catch-finally/

https://howtodoinjava.com/java/exception-handling/try-catch-finally/
https://howtodoinjava.com/java/exception-handling/try-catch-finally/

Try-Catch-Finally

• Example from Project 1

Recap …
• Introduction

• What is Java
• Java Language Constructs

• Java OOP Structure
• Class
• Object
• Attributes
• Methods

• Java OOP Core Principles
• Inheritance
• Encapsulation
• Abstraction
• Polymorphism

• More Java Concepts
• Overloading Methods
• Overriding Methods
• Generics
• Exceptions

	15-440 � Distributed Systems�Recitation 1
	Office Hours
	Logistics
	Big Picture
	Outline
	Slide Number 6
	Slide Number 7
	Java Introduction
	Java Introduction
	Java Introduction: Language Constructs
	Outline
	Java OOP: Structure
	Java OOP Structure: Class
	Java OOP Structure: Object
	Java OOP Structure: Object
	Java OOP Structure: Object
	Java OOP Structure: Object Constructors
	Slide Number 18
	Slide Number 19
	Java OOP Structure:�Object & Class Variables
	Java OOP Structure:�Object & Class Variables
	Java OOP Structure:�Object & Class Variables
	Outline
	Java OOP: Core Principles
	Java OOP Principles: Inheritance
	Slide Number 26
	Java OOP Principles: Inheritance
	Java OOP Principles: Inheritance
	Java OOP Principles: Inheritance (Casting)
	Java OOP: Core Principles
	Java OOP Principles: Encapsulation
	Java OOP Principles: Encapsulation
	Java OOP Principles: Encapsulation
	Java OOP Principles: Encapsulation
	Java OOP Principles: Encapsulation
	Java OOP Principles: Encapsulation
	Java OOP Principles: Encapsulation
	Java OOP Principles: Encapsulation
	Java OOP Principles: Encapsulation
	Java OOP Principles: Encapsulation
	Java OOP Principles: Encapsulation
	Java OOP Principles: Encapsulation
	Java OOP Principles: Encapsulation
	Java OOP Principles: Encapsulation
	Java OOP: Core Principles
	Java OOP Principles: Abstract Classes
	Java OOP Principles: Abstract Classes
	Java OOP Principles: Interfaces
	Java OOP Principles: Interfaces
	Java OOP: Core Principles
	Java OOP Principles: Polymorphism
	Java OOP Principles: Polymorphism
	Outline
	More Java Concepts
	Java OOP: Overloading Methods
	Java OOP: Overloading Methods
	Java OOP: Overloading Methods
	Java OOP: Overloading Methods
	Java OOP: Overloading Methods
	Slide Number 60
	Java OOP: Overriding Methods
	Java OOP: Overriding Methods
	Java OOP: Overriding Methods
	Java OOP: Overriding Methods
	Java OOP: Overriding Methods �(Super and Subclasses)
	More Java Concepts
	Java OOP: Generic Classes&Methods
	Java OOP: Generic Classes&Methods
	Java OOP: Generic Classes&Methods
	Java OOP: Generic Classes&Methods
	Java OOP: Generic Classes&Methods
	Java OOP: Generic Collections
	Java OOP: Generics Symbols
	More Java Concepts
	Try-Catch-Finally
	Try-Catch-Finally
	Recap …
	Slide Number 78

