
15-440
 Distributed Systems

Recitation 2

Slides By: Hend Gedawy
& Tamim Jabban

Big Picture

PROJECT 1

Problem Set 1:
Java Concepts,
Thread, Socket
Programming

Recitation 2:
Java Threads
and Socket

Programming

Recitation 3:
Project 1

Recitation 1:
Java Concepts

Due Sunday
Sept. 3

Will be
Released Next

Tuesday: Sept. 8

Outline
• Communication via Sockets in Java

• Multi-threading in Java

• Coding a full Client-Server Example
On Eclipse, we’ll code an “echo” TCP Server-Client Example

Presenter Notes
Presentation Notes
focus on TCP protocol because this is what is needed in project 1.

Communication via Sockets
• Sockets provide a communication mechanism between

networked computers.

• A Socket is an end-point of communication that is
identified by an IP address and port number.

• A client sends requests to a server using a client socket.

• A server receives clients’ requests via a listening socket

Presenter Notes
Presentation Notes
a way to speak to other programs using standard Unix file descriptors

A Socket is nothing but a file in UNIX operating system

Communication via Sockets

Person B
(Guest)

Person A
Is Listening

Person B
knocks the door

Person A
Opens door

Person B
Enters

Person A
(A’s home)

Presenter Notes
Presentation Notes
Let’s look at an analogy that would make us understand network operations and socket communication
Let’s say person B wants to communicate with person A
First of all person A needs to have a well-known address that B knows
Then A needs to also be actively listening for the door in case anyone knocks
Then B has to actually knock the door
Then A has to let B in

Communication via Sockets

Person B
(Guest)

Person A
Is Listening

Person B
knocks the door

Person A
Opens door

A “binds” to
his home

Person B
Enters

B sends a
request to

communicate

A accepts the
request

B is now
“connected”

with A

Person A
(A’s home)

Presenter Notes
Presentation Notes
In other words, we say that A binds to his home
So, he is in a well-known address and now he is listening for requests
B sends a communication request
And when A accepts, B becomes connected with A

Communication via Sockets

Server A Client B

Server A is Listening
to Requests

Client B sends a
request to

communicate
with the server

Server A accepts
request

A binds to socket address:
(1) IP address
(2) Port number

Client B is now
connected with

Server A

Presenter Notes
Presentation Notes
Now back to Networks,

So in this case A is the server which binds to an IP address and a port number
Then it starts listening for connections

And B is the client that sends requests to communicate with the server

And when A accepts, B is now connected.

This is at a high level… Now let’s get into more details

Communication via Sockets
Listening Socket Service Socket

Listen & acceptWhen writing
the code,

these steps
could be
merged

More on that
later!

Presenter Notes
Presentation Notes
This is how the process goes exactly.

So the server creates a server listening socket. Then…

A server uses bind to ask the kernel to associate the server’s socket address (which has the ip and port number) with a socket descriptor (in linux it is no different than a file descriptor).

A server calls the listen function indicating that the kernel should accept incoming connection requests directed to this socket.
Servers wait for connection requests from clients by calling accept

Now on the other side, the client creates a socket given the server IP and port.
A client establishes a connection with a server by calling connect

When the connection is established, the server creates a service socket that is used to serve clients
After some read/write communication iterations between the two ends, both sockets are closed.

Socket Communication Recipe

Listening socket

Client socket Listening socket

Service socket

Client

Presenter Notes
Presentation Notes
Server instantiates a ServerSocket object (usually passing a port number). This creates the socket and binds it to the given port number. �This socket is referred to as the listening socket.

Server invokes the accept() method that listens and awaits incoming client connections.

Client instantiates Socket object (passing an address to connect to). �This socket is referred to as a client socket.

On the server side, accept() returns a new socket referred to as a service socket on which the client reads/writes.

ServerSocket Methods
SN Methods with Description
1 public ServerSocket(int port)

Attempts to create a server socket bound to the specified port. An exception occurs if the port is
already bound by another application.

2 public ServerSocket()
Creates an unbound server socket. When using this constructor, use the bind() method when you
are ready to bind the server socket.

3 public void bind(SocketAddress host)
Binds the socket to the specified server and port in the SocketAddress object. Use this method if
you instantiated the ServerSocket using the no-argument constructor.

4 public Socket accept()
Waits for an incoming client. This method blocks until either a client connects to the server on the
specified port or the socket times out, assuming that the time-out value has been set using the
setSoTimeout() method. Otherwise, this method blocks indefinitely.

5 public SocketAddress getLocalSocketAddress()
Returns the address of the endpoint this socket is bound to, or null if it not bound yet.

6 public void close() Closes the socket

Methods we will
use in the demo

There are two ways to create
and bind ServerSocket:

1) ServerSocket(int port):
which will create the socket
and bind it with the given
port

2) InetSocketAddress(port) +
ServerSocket()+
bind(address)

Presenter Notes
Presentation Notes
These are examples of the main methods that we will need

We will use the second option because you will deal with InetSocketAddress in project 1

https://docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html

Socket Methods
SN Methods with Description

1 public Socket(String host, int port)
This method attempts to connect to the specified server at the specified port. If this
constructor does not throw an exception, the connection is successful and the client is
connected to the server.

2 public Socket()
Creates an unconnected socket. Use the connect() method to connect this socket to a server.

3 public void connect(SocketAddress host)
This method connects the socket to the specified host. This method is needed only when you
instantiated the Socket using the no-argument constructor.

4 public InputStream getInputStream()
Returns the input stream of the socket. The input stream is connected to the output stream of
the remote socket.

5 public OutputStream getOutputStream()
Returns the output stream of the socket. The output stream is connected to the input stream
of the remote socket

6 public SocketAddress getLocalSocketAddress()
Returns the address of the endpoint this socket is bound to, or null if it is not bound yet.

7 public void close() Closes the socket, which makes this Socket object no longer capable of
connecting again to any server

Methods we will
use in the demo

There are two ways to create
and connect a client socket:

1) Socket(String host, int port)
• You can use “127.0.0.1”

for local host
2) InetSocketAddress(String

host, int port) + Socket() +
connect(SocketAddress
host)

https://docs.oracle.com/javase/8/docs/api/java/net/Socket.html

Transport Protocols
• Socket: endpoint to read and write data

• Each Socket has a network protocol

• Two types of protocols used for communicating data/packets over the internet:

• TCP:

• Transmission Control Protocol

• Connection Oriented (handshake)

• UDP:

• User Datagram Protocol

• “Connectionless”

Presenter Notes
Presentation Notes
What communication or network protocol do we use on the ports?
The process explained so far is for TCP protocol which is connection oriented

There is another protocol called UDP and it is connectionless

Transport Protocols

Presenter Notes
Presentation Notes
TCP has different things that make it reliable such as the handshaking, congestion control, the in order delivary and the Ack and retransmission

In UDP you have none of that. It is the approach of send and just pray that it gets through

Outline
• Communication via Sockets in Java

• Multi-threading in Java

• Coding a full Client-Server Example
On Eclipse, we’ll code an “echo” TCP Server-Client Example

Listen & accept

Listen & accept

TCP Multi-
Threading

Listening Socket Service Socket

Server main
thread

Service Thread
for Client 1

Service Thread
for Client 2

TCP Single-
Threading

Client 1

Client 2

Presenter Notes
Presentation Notes
Let’s look again at our TCP socket communication process
Where in the process in multi-threading needed?

Multi-Threading in General
• STEP 1: A class intended to execute as a thread must implement the Runnable

interface
 public class Service implements Runnable

• Implement the method run()
 public void run() { //thread’s logic goes here }

• STEP 2: Instantiate a Thread object passing an instance of the intended class
 Thread t = new Thread(new Service())

• STEP 3: Invoke start() on the new thread
 t.start() // invokes the run() method implemented in

 the Service class

Presenter Notes
Presentation Notes
The Runnable interface should be implemented by any class whose instances are intended to be executed by a thread.

 Runnable interface has only one method named run().

run(): is used to perform action for a thread.

The start() method of Thread class is used to start a newly created thread.

It performs the following tasks:
A new thread starts(with new callstack).
The thread moves from New state to the Runnable state.
When the thread gets a chance to execute, its target run() method will run.

TCP Multi-Threading Example
public class TCPServer {
 public void runService(Socket serviceSocket) {
 Thread newServiceThread = new Thread(new Service(serviceSocket));
 newServiceThread.start();
 }

}

Public class Service implements Runnable {
 private Service(Socket serviceSocket) {
 }

 public void run() {
 //the code for reading and writing to a client goes here
 }
}

Runnable Interface

public void run()

Thread (Runnable)
start()
stop()

wait() ….

Thread Class

Runs

Outline
• Communication via Sockets in Java

• Multi-threading in Java

• Coding a full Client-Server Example
On Eclipse, we’ll code an “echo” TCP Server-Client Example

Let’s start with Psuedocode
Server Client

Service implements Runnable

serverAddres = new InetSocketAddress(port)
listenSocket= new ServerSocket()
listenSocket.bind(serverAddres)
While(true)

serviceSocket= listenSocket.accept()
Thread service= new thread(new
Service(serviceSocket))
service.start()

• serverAddres= new InetSocketAddress(port)
• clientSocket= new Socket()
• clientSocket.connect(serverAddres)
• While(true)

• Read user’s input message
• Write the message to the socket
• Read the echoed message from the socket

• clientSocket.close()

How to do these?

While(true)
Read client message from socket
Write message back to client

serviceSocket.close()

Presenter Notes
Presentation Notes
So we want the server to accept and handle multiple clients (by creating a separate service thread for each one)
On the service thread, when the server receives a message from client, it will send the same message back

Now on the client side,
The client will read the user input
Send the input to the server
Prints what it received from the server

implement the service class as a private class inside the Server class

Useful Java Methods/Classes: To Read
User’s input

Scanner class allows to read user input.

Scanner(InputStream source)
Constructs a new Scanner that produces values scanned from the
specified input stream.

Methods to read different input types using the scanner object

If you pass (System.in), you can
read input from the keyboard

https://docs.oracle.com/javase/8/docs/api/java/util/Scanner.html
https://docs.oracle.com/javase/8/docs/api/java/util/Scanner.html#Scanner-java.io.InputStream-
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html

Useful Java Methods/Classes: To Read and
Write to Socket

Photo credit: https://voyager.deanza.edu/~hso/cis35a/lecture/java18/intro/io.html

When you create a socket, you can retrieve the socket’s InputStream and
OutputStream which allow you to write raw bytes to the socket

public InputStream getInputStream()
public OutputStream getOutputStream()

Java has more classes that build on InputStream and OutputSream to allow
writing data in different forms and ways

We will create ObjectInputStream and ObjectOutputStream objects to be able
to read and write objects instead of raw bytes.

We will use the following constructors:
ObjectInputStream(InputStream in)

ObjectOutputStream(OutputStream out)

Then we can use the readObject(), writeObject()
methods to read from and write to the socket

https://voyager.deanza.edu/%7Ehso/cis35a/lecture/java18/intro/io.html
https://docs.oracle.com/javase/8/docs/api/java/io/ObjectInputStream.html#ObjectInputStream-java.io.InputStream-
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/ObjectOutputStream.html#ObjectOutputStream-java.io.OutputStream-
https://docs.oracle.com/javase/8/docs/api/java/io/OutputStream.html

Demo Time 

	15-440 � Distributed Systems�Recitation 2
	Slide Number 2
	Outline
	Communication via Sockets
	Communication via Sockets
	Communication via Sockets
	Communication via Sockets
	Communication via Sockets
	Socket Communication Recipe
	ServerSocket Methods
	Socket Methods
	Transport Protocols
	Transport Protocols
	Outline
	TCP Multi-Threading
	Multi-Threading in General
	TCP Multi-Threading Example
	Outline
	Let’s start with Psuedocode
	Useful Java Methods/Classes: To Read User’s input
	Useful Java Methods/Classes: To Read and Write to Socket
	Demo Time 

