
15-440
 Distributed Systems

Recitation 3

Slides By: Hend Gedawy &
Tamim Jabban

Announcements

Grades for Pop Quiz 1 are out
 Average: 8, Highest: 10

Grades for Problem Set 1 – Sunday

Problem Set 2 is Out
 Due: Sep. 26th

Big Picture

PROJECT 1

Problem Set 1:
Java Concepts,
Thread, Socket
Programming

Recitation 2:
Java Threads
and Socket

Programming

Recitation 3:
Project 1

Recitation 1:
Java Concepts

Outline
• Project Overview

• Architecture & Process Flow

• RMI Concepts & Example

• RMI in the Project

• Code Overview

Project 1
• Involves creating a Distributed File System (DFS):

FileStack

• Stores data that does not fit on a single machine

• Enables clients to perform operations on files stored on
remote servers

• Using Remote Method Invocation (RMI)

Presenter Notes
Presentation Notes
you will implement FileStack,a distributed file system that stores a vast amountof data (files) which typically do not exist on a single machine. Clients or users of that system, will be able to perform file operations on the files stored on remote servers

Entities
• Three main entities in FileStack:

• Storage Servers:
• Physically hosts the files in its local file system

• Client:
• Creates, reads, writes files using RMI

Storage
Server 2

Storage
Server n

Storage
Server 1

Naming
Server

Client

• Naming Server (Mediator):
• Runs at a predefined address
• Uses a Directory Tree to maintain knowledge about the files

in the system
• Maps file names to Storage Servers
• Repository of metadata

Presenter Notes
Presentation Notes
Briefly, the files are physically stored on a set of servers called Storage Servers. Users, referred to as Clients, can do operations on files like create, delete, read, write, and list files, all via using Remote Method Invocation (RMI).But how can the clients identify the storage servers that host the required files?They do so with the help of a mediator. Clients contact a Naming Server which maps every file name to a Storage Server. The Naming Server is thus a repository of metadata or data about data.

Implementation Notes
Modules Common to all Entities
• Communication (RMI)

• RMI package
• Skeleton.java generic class

• (used at the service hosting entity)
• Stub.java generic class

• (used at the invoking entity)

• File/Directory Path Helper Methods
used by naming & storage server

• common package - Path.java

Main Entities

Client entity is already implemented

Naming Server
• naming package- NamingServer.java

Storage Server
• storage Package- StorageServer.java

Provided
You need to implement

Testing Code:
• Conformance package
• Main file: conformanceTests.java

Outline
• Project Overview

• Architecture & Process Flow

• RMI Concepts & Example

• RMI in the Project

• Code Overview

Presenter Notes
Presentation Notes
the process and the communication between the entities

Architecture

Storage
Server 2

Storage
Server n

Storage
Server 1

Naming
Server

Client

Presenter Notes
Presentation Notes
FileStack is based on a client-server architecture. In this architecture, a client is a service requester and a server is a service provider. Servers also behave as clients when requesting services provided by other servers; as we will see in the process.

Process Flow
• Registration phase: storage sends its list of file paths that it hosts

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3
4

5

6

4

5

6

Presenter Notes
Presentation Notes
Upon start-up, each storage server sends its list of paths (of the files it hosts) to the naming server. This is known as Registration.

Process Flow
• Post registration, the Naming Server responds with a list of duplicates (if any).

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3
4

5

6

4

5

6

Presenter Notes
Presentation Notes
The Naming Server replies back to the Storage Server with a list of duplicate paths.We will get to that more in the next recitation

Process Flow
• System is now ready, the Client can invoke requests.

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3
4

5

6

4

5

6

Presenter Notes
Presentation Notes
After registration by all Storage Servers, the Naming Server is deemed to be capable of locating all files stored ateach Storage Server.

Process Flow
• Client requests a file operation from the Naming Server.

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3
4

5

6

4

5

6

Presenter Notes
Presentation Notes
Now the client can request a file operation from the server

Process Flow
• If the client requests to create/delete a file or create/delete a directory,

then the Naming Server takes care of handling the request with the
Storage Servers

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3

4

Presenter Notes
Presentation Notes
The Naming Server behaves as a client when requesting the services of a Storage Server.

Process Flow
• Otherwise, the Naming Server responds back to the Client with the Storage Server that hosts

the file.

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3
4

5

6

Presenter Notes
Presentation Notes
However, if the client requests other operations like read, write, etc. then the naming server sends back the Storage server that hosts the required file

Process Flow
• After the Client receives which Storage Server hosts the file, it contacts that Server to

perform the file operation.

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3
4

5

6

Outline
• Project Overview

• Architecture & Process Flow

• RMI Concepts & Example

• RMI in the Project

• Code Overview

Presenter Notes
Presentation Notes
A lot of the communication that we saw in the process involves remote method invocation. So let’s look closer at RMI

RMI

The RMI library is based on two
important objects: Stub & Skeleton

• RMI allows the following:

• When the client invokes a request, it is not a
aware of where it resides (local or remote). It
only knows the method’s name.

• When a server executes a method, it is
oblivious to the fact that the method was
initiated by a remote client.

• When a Client invokes a method that is not local (remote), it does a
(Remote Method Invocation)

• This is because the logic of the method resides on a remote server

• To perform this remote invocation, we need a library: Java RMI

Presenter Notes
Presentation Notes
the beauty of RMI is that it illusion given to both ends that the process is happening locallyThis happens through two objects, a skeleton and a stub

RMI Objects - Stub
• Stubs:

• When a client needs to perform an operation, it invokes the method
via an object called the “stub”
• If the operation is local, the stub just calls the helper function that

implements this operation’s logic
• If the operation is remote, the stub does the following:

• Sends (marshals) the method name and arguments to the appropriate server
(or skeleton),

• Receives the results (and unmarshals),
• Reports them back to the client.

Presenter Notes
Presentation Notes
Let’s look at the stub.A stub is what the client uses to invoke the methodFirst it checks if the method is local, it just calls it,If it is remote, then it marhsalls, the method name, argument types and argument values. Why do we need to send the type?Then it waits to receive the results, and unmarshalls them,And reports back to the clientMarshaling is the process of converting a datum (e.g., an object) into a byte stream that can be transmitted over a network.Unmarshaling – reverse of marshaling

RMI Objects-
Skeleton
• Skeletons:

•These are counterparts of stubs and reside reversely at the servers
• Therefore, each stub communicates with a corresponding skeleton

• It’s responsible for:
• Listening to multiple clients

• Unmarshalling requests (method name & method arguments)

• Processing the requests

• Marshalling & sending results to the corresponding stub

Presenter Notes
Presentation Notes
A skeleton resides at the server,It listens to multiple clients,Unmarshalls the method invocation request which includes the method name, arguments,Run the method Then it marshalls and sends results back to the stub.

RMI –
Implementation Logic

3. Making it remotely accessible
(using a Skeleton)

Server
Class

Interface
 (defines the

remote method)

Side

input

Creating Skeleton

SideCreating Stub

Implemented in

Stub Object
(client)

Skeleton
Object (Multi-
threading server

for Stubs)

RMI package
(Generic Skeleton&

stub classes)

RMI Package
(Generic Skeleton&

stub classes)

Client-server
communication to invoke

method and receive results

(Remote) Server
Interface

Skeleton IP
Address

1. Creating remote interface that the
server implements

2. Defining a server class

4. Accessing a server object
remotely (Using a Stub)

Presenter Notes
Presentation Notes
We create an interface that defines the remote methodThen we create a class that implements the interface and hence, implements the remote method logicTO make it remotely accessible, we use the interface and the class that we created to created a skeleton objectNow the skeleton runs and waits for stubs to connect…On the client side, we create a stub instance, passing the interface and the address of the corresponding skeleton-----------------------A stub uses an interface to determine if an invoked method is remote or localThe corresponding skeleton uses the interface to verify if an invocation is legitimate (i.e., the invoked method belongs to the interface).

RMI – Skeleton Class

• The skeleton is multi-threaded
• When it is started, the main thread

creates a listening socket and waits for
client requests.

public void start() {
create serverSocket();
bind(address);
while (!stopped) {

clientSocket = accept();
Thread a = new Thread

(new serviceThread(clientSocket));
a.start() ;
}

}

serviceThread {
String methodName = (String) in.readObject();
Class[] argTypes = (Class[]) in.readObject();
Object[] args = (Object[]) in.readObject();
Method m = c*.getMethod(methodName,argTypes);
Object result = m.invokeMethod(implementation*, args);
out.writeObject(result);

}

*c is the interface,
*implementation is the implementation of the interface

• Once a client's request is received, the skeleton accepts
the request, creates a new thread, and instantiates a
new service socket to handle the communication

We implement multi-threaded
socket programming

Presenter Notes
Presentation Notes
How does the skeleton class look like—Remember what we did in the previous recitation,,, it is the exact same thing…The skeleton class is simply a multi-threaded tcp server that Waits for stubs to connect, and then it creates a service thread for each connected stubThe service thread, receives method invocation requests and sends results back to the stubs

RMI Code Example – Server Side

public String writeToFile (String filename, String txt) throws IOException;

public interface IFile

public static void main(String[] args) {

// create InetSocketAddress given a port #

// create and start skeleton
Skeleton skltn = new Skeleton(address,
 IFile.class, IFileServer.class);
skltn.start(); }

public class IFileServer implements IFile

@Override
public String writeToFile(String filename, String txt)

{}

1)

2)

3)

public class Skeleton

class ServiceThread implements Runnable

// server socket programming logic
//create a serviceThread for each stub

// logic to read the request
// invoke the method
// return results

This is the method
that needs to be

remote!

Presenter Notes
Presentation Notes
In the demo example that we will do,We are allowing a client to write to a file that resides on a remote serverSo in order to do this, we have to create the skeleton at the server sideSo as we said, we first create the interfaceThen we created the class that implements the interfaceThen we create the skeleton object and start the skeleton..

RMI – Stub Class

invoke(Object proxy, Method method, Object[] args)

http://tutorials.jenkov.com/java-reflection/dynamic-proxies. html

JAVA interface invocationHandler

JAVA class proxy

newProxyInstance
(ClassLoader loader,
Class<?>[] interfaces,
InvocationHandler h)

class StubInvocationHandler
implements InvocationHandler

class Stub

create the stub
as a proxy

Proxy.newProxyInstance(
skeletonInterface.getClassLoader(),
skeletonInterface,
 new StubInvocationHandler())

// implements invoke() method

create invocationHandler
class for the stub

instantiate this class to
create the proxy

In java, a stub is implemented as a dynamic proxy, using:
1) Class loader: for the interface

• Class loaders are responsible for loading Java classes dynamically to the JVM (Java
Virtual Machine) during runtime.

2) Interface: the interface of the corresponding skeleton

3) Invocation Handler: the proxy instance dispatches method calls to an associated
invocation handler object which implements the interface InvocationHandler

• Invoke(): logic to handle method invocation
• Determines if method is local or remote
• If remote (i.e. if it is one of the methods in the interface)

• Connects to the corresponding skeleton
• Marshals method name, argument types and values
• Sends entailed byte stream
• Waits for results
• Unmarshals the result and send it back to client

Dynamic proxies allow one single class with one single method to service
multiple method calls to arbitrary classes with an arbitrary number of methods.

Go over java.lang.reflect.Proxy via the JavaDocs!

Goal: Stub pretends that it is implementing the corresponding skeleton’s interface
locally at the client , while it is actually implemented at the remote server

Presenter Notes
Presentation Notes
The goalHow do we give that illusion to the client, it is using dynamic proxy?If you look at Java proxy class, to create a proxy instance, it needs 3 params.The list of interfaces, in our case, we pass the interface of the corresponding skeleton which defines the methods that the client needs to invoke remotelyThis is the class loader of the interface as well, which is jus used to load the class at run timethe third parameter is critical.. The invocation handler.What is an invocation handler, it is an interface in java that defines one method called invoke…So if we want to create a proxy, we have to pass an instance of a class that implements invokcation handler, implements the invoke methodThe proxy will then dispatch any method calls to its associated invocation handler, and the invoke() method will handle it---A dynamic proxy can be thought of as a kind of Facade, but one that can pretend to be an implementation of any interface.---Simply put, proxies are fronts or wrappers that pass function invocation through their own facilities (usually onto real methods) – potentially adding some functionality.�

https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/InvocationHandler.html#invoke-java.lang.Object-java.lang.reflect.Method-java.lang.Object:A-
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Method.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
http://tutorials.jenkov.com/java-reflection/dynamic-proxies.html
http://tutorials.jenkov.com/java-reflection/dynamic-proxies.html
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/InvocationHandler.html
https://docs.oracle.com/javase%2F7%2Fdocs%2Fapi%2F%2F/java/lang/reflect/Proxy.html
https://docs.oracle.com/javase%2F7%2Fdocs%2Fapi%2F%2F/java/lang/reflect/Proxy.html#newProxyInstance(java.lang.ClassLoader,%20java.lang.Class%5B%5D,%20java.lang.reflect.InvocationHandler)
https://docs.oracle.com/javase%2F7%2Fdocs%2Fapi%2F%2F/java/lang/ClassLoader.html
https://docs.oracle.com/javase%2F7%2Fdocs%2Fapi%2F%2F/java/lang/Class.html
https://docs.oracle.com/javase%2F7%2Fdocs%2Fapi%2F%2F/java/lang/reflect/InvocationHandler.html
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/InvocationHandler.html

RMI Code Example – Client Side

public String writeToFile (String filename,
 String txt) throws IOException;

public interface IFile

public static void main(String[] args) {

// create InetSocketAddress

// create stub and invoke method
Stub stub = new Stub(address, IFile.class);
IFile myStub = (IFile) stub.getStub();

myStub.writeToFile("File2.txt", "Whats up!");

public class Client

4)

public class Stub

class StubInvocationHandler implements
InvocationHandler

public Stub(InetSocketAddress address, Class<IFile> intf)
{
 Object stub = Proxy.newProxyInstance(

// The ClassLoader that is to "load" the
dynamic proxy class.
intf.getClassLoader(),
// An array of interfaces to implement.
new Class[] {intf},
// An InvocationHandler to forward all methods
calls on the proxy to
new StubInvocationHandler()); }

public Object getStub() {
 return this.Stub; }

This is the remote method that the client invokes

@Override
public Object invoke(Object stub, Method
method, Object[] args){

// connect to corresponding skeleton
 // encode & send the request
//receive and decode results }

Presenter Notes
Presentation Notes
Casting the proxy instance object that we created in the stub 	to the interface type will allow it to call methods defined in the interface

RMI Code Example

Let’s Try It Out

Outline
• Project Overview

• Architecture & Process Flow

• RMI Concepts & Example

• RMI in the Project

• Code Overview

RMI in Project 1

You will Implement the Skeleton & Stub classes
(RMI Library)

Where are skeletons and stubs used in the Project?

Naming Server Interfaces& Skeletons
Naming
Server

Service
Interface

Implements

isDirectory
isFile

…

Registration
Interface

Implements

register

Creates

Client

Service
Stub

Service
Skeleton

Registration
Skeleton

Creates

Storage
Server

Registration
Stub

Presenter Notes
Presentation Notes
the Naming Server implements two interfaces, one for methods that can be invoked by Clients and the other for methods that can be invoked by Storage ServersTo make these methods remotely accessible, it creates a skeleton for each interfaceThe client side, creates a stub to invoke methods from the service skeletonAnd the storage server creates a stub to invoke methods from the registration skeleton	Registration: defines a single method, namely register, invoked by Storage Servers upon bootstrapping FileStack.

Storage Server Interfaces, Skeletons
Storage
Server

Storage
Interface

Implements

size
read
write

Command
Interface

Implements

create
delete

Who invokes methods
in each interface?

Storage
Skeleton

Command
Skeleton

Storage
Stub

Command
Stub

These stubs are created at the storage server and
sent to the Naming server during registration

Why ???

Presenter Notes
Presentation Notes
A problem, however, is that a Storage Server may run on any machine and its address (and, thereby, the addresses of its skeletons) is not predtermined. This implies that neither Clients nor the Naming Server can create the corresponding stubs to communicate with Storage Servers. To resolve this issue, each Storage Server creates its CommandStub and StorageStub. During registration, the Storage Servers transmit their stubs to the Naming Server along with their list of files. Hence, when a Client invokes the getStorage method, what the Naming Server actually returns is the StorageStub of the Storage Server which hosts the requested file. Similarly, when the Naming Server needs to communicate with a Storage Server, it uses the respective CommandStub.-----------------------That’s why if you look at the stub class you have different constructors, because sometimes it is created using a predetermined address .. This applies when we create stubs to invoke methods from the naming server…However, when we create stubs to invoke methods from the storage server, the stubs are created using skeleton objects

RMI in Project 1:
Skeletons & Stubs Summary
• At Client

• Service Stub: connects to the Naming server - sends file operation requests

• At Naming Server
• Implements Service & Registration Interfaces
• Service Skeleton: serves Clients for file operations
• Registration Skeleton: serves Storage server for registration

• At Storage Server:
• Implements Storage & Command Interfaces
• Registration Stub: registers with naming server
• Storage Skeleton: serves Clients

• Storage Stub (sent to Naming Server to send it to Clients to use to write/read file and get file size)
• Command Skeleton: serves the Naming Server

• Command Stub (sent to Naming Server to use it to act as client to the Storage Server when it
needs it to create/delete files/directory)

Presenter Notes
Presentation Notes
For your reference, this is a summary of all the skeletons and their corresponding stubs in project 1 that we talked about.

RMI Full Example: Client Read
Client Naming

 Server
 Storage

 Server
Service

Stub
Service

Skeleton
Storage
Skeleton

TI
M

E

ServiceStub.getStorage(abc)

GetStorage(abc)

GetStorage(abc)

Storage
Stub

Storage
Stub

Storage
Stub

StorageStub.
 read(abc,0,10)

read(abc,0,10)

read(abc,0,10)

“HelloWorld”
“HelloWorld”

“HelloWorld”

Presenter Notes
Presentation Notes
Let’s look at an example, when a client needs to read from a file.First, it will ask the naming server about the storage server that hosts the required fileTo do, the client invokes the getStorage method, The stub invokes that method by sending the request to the sorresponding service skeleton at the naming serverThe skeleton will call the method at the naming server to get the stub of the storage sever that hosts the file the client needsThe skeleton will encode and send the stub back to the service stub which will decode and send it back to the client.Now the client will use this storage stub to invoke the read method remotely on the hosting server.So it wants to read the first 10 charcters at file abc. The stub will connect and send the request to the corresponding skeleton at the hosting server.The skeleton will run the method on the storage sever and again encode and send the result back to the invoking stubWhich will decode and return it to the client

Outline
• Project Overview

• Architecture & Process Flow

• RMI Concepts & Example

• RMI in the Project

• Code Overview

Presenter Notes
Presentation Notes
Now let’s look at the starter code

Outline: Code Overview

• The main entities
• Look at the files that need implementation

• The Conformance testing code
• The main file where tests are called
• How test classes are structures
• Knowing dependencies among test classes
• Example: Look at the testing code of

• Path
• RMI

Running Code Notes
• Edit …./Project1/conformance/ConformanceTests.java

• Comment out the test lines that you don’t want to run

• …./Project1$ make
• Run ConformanceTests file

Recap …• Project1 Overview

• Main Entities

• Naming Server

• Storage Servers

• Client

• Path and RMI Library

• Project 1 Process Flow & Communication

• RMI Concepts & Example

• Skeletons & Stubs

• Implementation w/ Example

• RMI in the Project

• Skeletons and Stubs in Project 1

• Example: Client Read

• Starter/Testing Code Overview

	15-440 � Distributed Systems�Recitation 3
	Slide Number 2
	Slide Number 3
	Outline
	Project 1
	Entities
	Implementation Notes
	Outline
	Architecture
	Process Flow
	Process Flow
	Process Flow
	Process Flow
	Process Flow
	Process Flow
	Process Flow
	Outline
	RMI
	RMI Objects - Stub
	RMI Objects- Skeleton
	RMI – �Implementation Logic
	RMI – Skeleton Class
	RMI Code Example – Server Side
	RMI – Stub Class
	RMI Code Example – Client Side
	RMI Code Example
	Outline
	RMI in Project 1
	Naming Server Interfaces& Skeletons
	Storage Server Interfaces, Skeletons
	RMI in Project 1: �Skeletons & Stubs Summary
	RMI Full Example: Client Read
	Outline
	Outline: Code Overview
	Running Code Notes
	Slide Number 36
	Slide Number 37

