
15-440
Distributed Systems

Recitation 4

By: Hend Gedawy
& Previous TAs

Grades for Problem Set 1 are out

Design Report for Project 1
Due: Sep. 17th (Sunday)

Announcements

PS1 misconception

?

When a method declared with throws (e.g. baz()) is
called by another method (e.g. foo()), …

the thrown exception has to be handled at the caller
in one of two ways to prevent compile time error:

1.By using try catch
2.By using the throws keyword

You will encounter this in Project 1

https://www.geeksforgeeks.org/flow-control-in-try-catch-finally-in-java/

Last Time

• Entities, Architecture and
Communication

• RMI Concepts

• RMI Demo

• RMI in Project 1

• Starter Code Overview

Today

• Packages dive-in:
✔ RMI
✔ Common
✔ Naming
✔ Storage

Project 1 Overview
Involves creating a Distributed File System (DFS): FileStack
• Stores data that does not fit on a single machine
• Enables clients to perform operations on files stored on remote servers;

Using Remote Method Invocation (RMI)

Three main entities in FileStack:
• Storage Servers:

 Physically hosts the files in its local file system
• Client:

 Creates, reads, writes files using RMI
• Naming Server (Mediator):

• Runs at a predefined address
• Uses a Directory Tree to maintain knowledge about the files in the system

• Maps file names to Storage Servers
• Repository of metadata

Storage
Server 2

Storage
Server n

Storage
Server 1

Naming
Server

Client

Presenter Notes
Presentation Notes

You will implement FileStack, a distributed file system

Where files are stored on multiple storage servers.
Clients are able to remotely perform file operations on the files
Using the assistance of the Naming server which is the mediator
	It maintains a repo of metadata about files to be able to link a client to the storage server that hosts the desired file.

Architecture
• FileStack will boast a Client-Server
architecture:

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3
4

5

6

Communication
• Registration phase

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3
4

5

6

Communication
• Post registration, the Naming Server responds with a list of duplicates (if

any).

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3
4

5

6

Communication
• System is now ready, the Client can invoke requests.

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3
4

5

6

Communication
• Client can send file operation requests to the Naming Server.

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3
4

5

6

Presenter Notes
Presentation Notes
Now client requests could lead to two things.

For some operations, the naming server will handle the operation directly with the storage server without involving the clients

Communication
• Depending on the operation, the Naming Server could either perform it,

• or, respond back to the Client with the Storage Server that hosts the file.

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3
4

5

6

Presenter Notes
Presentation Notes
For the other operations like read, write or size, the naming server will respond with the stub of the storage server hosting the required file

Communication
• After the Client receives which Storage Server hosts the file, it contacts that

Server to perform the file operation.

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3
4

5

6

Presenter Notes
Presentation Notes
and the client will take it from there
And will use that stub to invoke the file operations remotely

Implementation Notes
Modules Common to all Entities
Communication (RMI)

RMI package
Skeleton.java generic class

(used at the service hosting entity)
Stub.java generic class

(used at the invoking entity)

File/Directory Path Helper
Methods used by naming & storage
server

common package - Path.java

Main Entities

Client entity is already implemented 

Naming Server
• naming package- NamingServer.java

Storage Server
• storage Package- StorageServer.java

Provided 
You need to implement

Testing Code:
• Conformance package
• Main file: conformanceTests.java

Today’s Outline
Packages dive-in:

✔ RMI
✔ Common
✔ Naming
✔ Storage

RMI

The RMI library is based on two important
objects: Stub & Skeleton

• RMI allows the following:

• When the client invokes a request, it is not a
aware of where it resides (local or remote). It
only knows the method’s name.

• When a server executes a method, it is
oblivious to the fact that the method was
initiated by a remote client.

• When a Client invokes a method that is not local (remote), it does a
(Remote Method Invocation)

• This is because the logic of the method resides on a remote server

• To perform this remote invocation, we need a library: Java RMI

Presenter Notes
Presentation Notes
the beauty of RMI is that it illusion given to both ends that the process is happening locally

This happens through two objects, a skeleton and a stub

RMI –
Implementation Logic

3. Making it remotely accessible
(using a Skeleton)

Server
Class

Interface
 (defines the

remote method)

Side

input

Creating Skeleton

SideCreating Stub

Implemented in

Stub Object
(client)

Skeleton
Object (Multi-
threading server

for Stubs)

RMI package
(Generic Skeleton&

stub classes)

RMI Package
(Generic Skeleton&

stub classes)

Client-server
communication to invoke

method and receive results

(Remote) Server
Interface

Skeleton IP
Address

1. Creating remote interface that the
server implements

2. Defining a server class

4. Accessing a server object
remotely (Using a Stub)

Presenter Notes
Presentation Notes
We learned this RMI implementation logic in the previous recitation

RMI in Project 1- Full Example: Client Read
Client

Naming
Server

Storage
Server

Service
Stub

Service
Skeleton

Storage
Skeleton

TI
M

E

ServiceStub.getStorage(abc)

GetStorage(abc)

GetStorage(abc)

Storage
Stub

Storage
Stub

Storage
Stub

StorageStub.
read(abc,0,10)

read(abc,0,10)

read(abc,0,10)

“HelloWorld”
“HelloWorld”

“HelloWorld”

Presenter Notes
Presentation Notes
This was a full example including RMI from project 1 which shows how stubs and skeletons are used.

Skeleton: Expected Performance
• Skeleton is a multi-threaded TCP server
• When it is started, the main thread creates a listening

socket and waits for client requests.
• Once a client's request is received, the skeleton accepts the

request, creates a new service thread, and instantiates a
new service socket to handle the communication

• The service thread lives till an exception is thrown OR the request is processed, and result is returned
• The result returned to client could be …

• a value: returned by the invoked method
• Or an InvocationTargetException cause

• For other socket I/O Exceptions, an RMIException should be thrown

Presenter Notes
Presentation Notes
the service thread should live till the request is completed or an exception happens
	so you don’t keep an infinite loop
	the thread is per request

Two results can be returned to client
	one if everything goes well and the invoked method returns a value, this value is retuned
	If an exception happens during method invokcation, then the cause of the exception should be returned to the client

Anysocket I/O exceptions that happens during reading request and sending result should be responded to by throwing an RMI exception

Stub: Expected Performance
public class Stub

class StubInvocationHandler implements
InvocationHandler

public Stub(InetSocketAddress address, Class<IFile> intf) {
 Object stub = Proxy.newProxyInstance(

// The ClassLoader that is to "load" the dynamic
proxy class.
intf.getClassLoader(),
// An array of interfaces to implement.
new Class[] {intf},
// An InvocationHandler to forward all methods
calls on the proxy to
new StubInvocationHandler()); }

public Object getStub() {
 return this.Stub; }

@Override
public Object invoke(Object stub, Method method,
Object[] args){

// connect to corresponding skeleton
 // encode & send the request
//receive and decode results }

• A stub is created as a dynamic proxy instance
• It is associated with an instance of a class that

implements InvocationHandler Java interface
(e.g. StubInvocationHandler)

The class implements invoke method to do the following:
• If method is remote:

• Connect to skeleton
• Marshall and send request
• Unmarshall result

• Value: return it to client
• InvocationTargetException, throw

• Throw RMIException for I/O Exceptions
• If method is local, call it. Local methods are:

• equals
• hashCode
• toString

• If method is neither: throw NoSuchMethodError

Presenter Notes
Presentation Notes
Two stubs are equal if their skeleton addresses and invocation handlers are equal
Hashcode() skeleton address hashCode

RMI Questions

When creating a Skeleton or a Stub, you are asked to throw an
Error if the passed class c doesn’t represent a remote interface.

How to know an interface is remote??

An interface is remote if all of its methods throw an exception of
type RMIException

Presenter Notes
Presentation Notes
you have to find a way to retrieve the methods,
Iterate over the methods
And for each method, retrieve the exceptions that the method is declared to throw and make sure that an exception of type RMIException is included

Today’s Outline
Packages dive-in:

✔ RMI
✔ Common
✔ Naming
✔ Storage

Path class Overview

• Common package contains the
class Path which contains helper
methods that are used by
Naming Server and the Storage
Servers.

• Path creation
• Listing
• toString
• Equals
• Hashcode
• isRoot
• …

Path class – Highlights

string representation: “/directory1/subDir1/file1”

Path: a sequence of components (names of files/directories)

Root: empty list or array of components,
 string representation: “/”

Not Root: directory1 subDir1 file1

directory1

subDir1

file1

subDir1

file2

File toFile(File root) Expected Performance Path[] List(File directory) Expected Performance

Starting at the given directory, convert the
given path to a File

i.e. create/add all path components starting at
the given directory

Create and Return a list of the Paths of all
files under the given directory

Today’s Outline
Packages dive-in:

✔ RMI
✔ Common
✔ Naming
✔ Storage

Naming package
The naming package contains:

1. Registration interface

2. Service interface

Naming
Server

Service
Interface

Implements

isDirectory(Path)
isFile(Path)

createFile(Path)
createDirectory(Path)

delete(Path)
getStorage(Path)

Registration
Interface

Implements

Register
(Storage,
Command,
Path[])

Service
Skeleton

Registration
Skeleton

Client

Service
Stub

Storage
Server

Registration
Stub

4. NamingServer.java class:
• Implements Registration and Service interfaces (i.e.

implements all their methods)
• Creates skeletons for Registration and Service interfaces to

make methods them remotely accessible to storage
servers and clients.

• Uses Port numbers defined in NamingStubs.java to create the skeletons
• Creates and maintains a repo of metadata about files in

the system
• Maps files to hosting servers
• Uses a directory tree to track files

3. NamingStubs.java public class:
Defines service and registration ports
Has static methods to create registration and service stubs

You could use it to create the stubs at the Storage Server

Presenter Notes
Presentation Notes
There are 4 main classes in this packagae

The two interface classes that the Naming server implements.
 As you notice the path object that you created is leveraged in all the methods.
And as we said the Naming server will create a skeleton for each interface to make the methods remotely accessible to storage servers and clients

There is another class called NamingStubs
This has two things, it defines the port numbers of the service and registration skeletons
It also has static methods that can create the stub for each skeleton
You can leverage it when you create the stubs at the storage server

The naming server will do what we said before
But the critical thing that it does is that it maintains a repo of metdata about files
It creates a directory tree for the file system and maps file names to host servers

Let’s look more into the directory tree

Naming server – Directory Tree

• Creates and maintains the FileStack directory tree:
 Top-level directory being the root represented by the path "/".
 Inner tree nodes represent directories,
 the leaves represent files

• Builds its tree during registration.

• After registration, uses its tree to handle operations (e.g. getStorage()).

• It is important to design the directory tree in a way that allows the
NamingServer to easily look-up, traverse and alter the tree, as well as
detect invalid paths.

Presenter Notes
Presentation Notes
So everytime a new storage server registers and sends all of its file paths
The naming server will consider the paths one by one and add path components as nodes/leaves to the tree

Now after registration, this tree would be leveraged to perform the operations that the client requests
For example, when the client needs to know the host server of a given file path, the tree should capture that and you should be able to retrieve this information

Building the Directory Tree During Registration

Storage Server A registers:
 Path[] serverA_files = {

• Path("/file"),
• Path("/directory/file"),
• Path("/directory/another_file"),
• Path("/another_directory/file")

};

Storage Server B registers:
Path[] serverB_files = {

• Path("/file"),
• Path("/directory/file"),
• Path("/another_directory/another_file")

};

“/”

“file”“directory”

“file”“another_file”

“another_
directory”

“file”

Example from Testing Code

Rule: Files with same Paths shouldn’t be duplicated across Storage Servers

“another_file”

What Paths
should Server B

delete

Presenter Notes
Presentation Notes
an example from the test code for building the tree during registration

The test code is expecting that when a new server registers, you identify duplicate file paths (which were previously capture in the three) and to do two things
	first you won’t add them to the tree
	second, you will ask the storage server to delete these file paths

Implementing the Directory Tree

• How can we build the Directory Tree?
• One way is to use Leaf/Branch approach:

• Leaf will represent:
• A file (name) and stub

• Branch (inner node) will represent:
• A list of Leafs/Branches

“File 2”
C1
s1

“File 1”
C1
s1

“Dir1”
[Leaf1, Leaf2]

Leaf 1 Leaf 2

Branch 0

Branch 1 Branch 2

“File 3”
C2
s2

Leaf 3

“Dir1”
[Leaf3]

“/”
[Branch 1, Branch 2]

Presenter Notes
Presentation Notes
Have you implemented a tree before??
What classes or objects did you build?
What attributes did you have in the classes?
What methods?

Implementing the Directory Tree
public class Node {

String name;

}

public class Branch extends Node {

ArrayList<Node> list;

}

public class Leaf extends Node {

Command c;

Storage s;

}

“File 2”
C1
s1

“File 1”
C1
s1

“Dir1”
[Leaf1, Leaf2]

Leaf 1 Leaf 2

Branch 0

Branch 1 Branch 2

“File 3”
C2
s2

Leaf 3

“Dir1”
[Leaf3]

“/”
[Branch 1, Branch 2]

Implementing the Directory Tree

• What data should it Capture??

• Go back to all the methods that the naming server
needs to implement

• For each method, think of what information do you
need to capture in the nodes to be able to complete
the method/operation?

• You will leverage Path helper methods also to complete
these operations

isDirectory(Path)
isFile(Path)

createFile(Path)
createDirectory(Path)

delete(Path)
getStorage(Path)

Register (Storage, Command, Path[])

Naming server – Methods Highlights

• Start()
• Start skeletons

• Stop()
• Stop skeletons

Today’s Outline
Packages dive-in:

✔ RMI
✔ Common
✔ Naming
✔ Storage

Storage Package

• The Storage Package contains:
• Command.java (interface)

• Storage.java (interface)

• StorageServer.java (public class)
• Implements:

• Command Interface
• methods(s): create, delete

• Storage Interface
• methods(s): size, read, write

Storage
Interface

Implements

Size(Path)
Read(Path,
long,int)
Write(Path,

long, byte[])

Command
Interface

Implements

Create(Path)
Delete(Path)

Storage
Skeleton

Command
Skeleton

Storage
Stub

Command
Stub

These stubs are created at the storage server and
sent to the Naming server during registration

Storage
Server

Presenter Notes
Presentation Notes
Read: starting at a given offset, will read a number of bytes based on the passed number and return them
Write: starting at a given offset, will write the bytes in the given byte[] to the file

Storage Server – start()

• The StorageServer start() function will:
• Start the Skeletons:

• Command Skeleton
• Storage Skeleton

• Create the stubs
• Command Stub
• Storage Stub

• Registers itself with the Naming Server using:
• Its files
• The created stubs

• Post registration, we receive a list of duplicates (if any):
• Delete the duplicates
• Prune directories if needed

The Directory Tree should not have
duplicate File Paths across storage

servers.

Whenever a storage server registers,
 if the tree already tracked the file

with the same path at another server
that registered earlier,

 then the new registering server
should delete it

Presenter Notes
Presentation Notes
Recursively prunes a fileystem directory.
Any directory tree with no files is removed.

Storage Server – stop()

• The StorageServer stop() function will:
• Stop the skeletons:

• Command Skeleton
• Storage Skeleton

Other File Methods are straight forward 

Early Feedback

	15-440
Distributed Systems
	Slide Number 2
	PS1 misconception
	Last Time
	Slide Number 5
	Project 1 Overview
	Architecture
	Communication
	Communication
	Communication
	Communication
	Communication
	Communication
	Implementation Notes
	Slide Number 15
	RMI
	RMI – �Implementation Logic
	RMI in Project 1- Full Example: Client Read
	Skeleton: Expected Performance
	Stub: Expected Performance
	RMI Questions
	Slide Number 22
	Path class Overview
	Path class – Highlights
	Slide Number 25
	Naming package
	Naming server – Directory Tree
	Building the Directory Tree During Registration
	Implementing the Directory Tree
	Implementing the Directory Tree
	Implementing the Directory Tree
	Naming server – Methods Highlights
	Slide Number 33
	Storage Package
	Storage Server – start()
	Storage Server – stop()
	Slide Number 37
	Early Feedback

