
15-440
 Distributed Systems

Recitation 6
Slides By: Hend Gedawy &

Laila Elbeheiry

PS3 Released
Due: Oct. 16th

Project 1
Due: Oct. 1st (Sunday)

Announcements

Outline

• Concurrent Programming Introduction
• Defining Concurrency?
• Concurrency versus parallelism
• Why Concurrency?
• Concurrency in Java

• Ensuring Safety in Concurrent Programs
• Thread Synchronization & challenges
• Bank Use Case Example: Multiple Threads using abstract shared memory

• More on Concurrency

Outline

• Concurrent Programming Introduction
• Defining Concurrency?
• Concurrency versus parallelism
• Why Concurrency?
• Concurrency in Java

• Ensuring Safety in Concurrent Programs
• Thread Synchronization & challenges
• Bank Use Case Example: Multiple Threads using abstract shared memory

• More on Concurrency

From Sequential To Concurrent

• Sequential Programs
• Single thread of control
• Executes one instruction at a time

• Concurrent Programs
• Multiple autonomous sequential

threads, executing (logically) in parallel Logically

Concurrency vs. Parallelism

• Concurrency doesn’t imply parallelism Why?

Concurrency is the basis for writing parallel programs.
 Parallel programs have the same correctness issues as concurrent

Implementing/Executing Multiple Threads

• Multiprogramming – Threads multiplex their executions on a single
processor.

• Multiprocessing – Threads multiplex their executions on a
multiprocessor or a system

• Distributed Processing – Processes multiplex their executions on
several different machines

Why Concurrency?

• Natural application structure

• Increased Application throughput & responsiveness

• With multi-cores & multi- processors hardware, you can get
parallel execution

• Also, when you are building a large distributed system

Concurrency in Java

• Java has a predefined class java.lang.Thread
public class MyThread extends Thread {

public void run() {
}

}

• Java also provides a standard interface
public interface Runnable {

public void run();
}

• Any class which wishes to express concurrent execution must implement
this interface and the run method

• Threads do not begin their execution until the start method in the
Thread class is called

Concurrency in Javas - Steps
• STEP 1: A class intended to execute as a thread must implement the Runnable

interface
 public class Service implements Runnable

• Implement the method run()
 public void run() { //thread’s logic goes here }

• STEP 2: Instantiate a Thread object passing an instance of the intended class
 Thread t = new Thread(new Service())

• STEP 3: Invoke start() on the new thread
 t.start() // invokes the run() method implemented in

 the Service class

Outline

• Concurrent Programming Introduction
• Defining Concurrency?
• Concurrency versus parallelism
• Why Concurrency?
• Concurrency in Java

• Ensuring Safety in Concurrent Programs
• Thread Synchronization & challenges
• Bank Use Case Example: Multiple Threads using abstract shared memory

• More on Concurrency

Bank Example

Bank Example-
With 1 ATM
Account ID > Hend
Password > 1234
your account balance is 200
Deposit or withdraw amount > -150
your balance is 50

Ti
m

e

Bank Example-
Multiple ATMs

Create Multiple ATM Threads

Activity Trace 1 of ATMs

Account ID > Hend
Password > 1234

your account balance is 200

Deposit or withdraw amount > -150
your balance is 50

Account ID > Sana

Password > 0000
your account balance is 250

Deposit or withdraw amount > -50
your balance is 200

Ti
m

e

Thread 1 Thread 2

Activity Trace 2 of ATMs

Account ID >

Hend
Password >

1234
Your account balance is 200
Deposit or withdraw amount >

-150
your balance is 50

Account ID >

Hend
Password >

1234
Your account balance is 200
Deposit or withdraw amount >

 -150

your balance is 50

Ti
m

e

Thread 1 Thread 2

Deposit or withdraw amount >

-150

val=-150

acc.getbal()+val > 0 //yes
acc.post(-150)

Your balance is 50

Deposit or withdraw amount >
-150

 val= -150

acc.getbal()+val > 0 // yes

acc.post(-150)
Your balance is 50

Ti
m

e
Activity Trace 2 of ATMs –
Zoomed In

Thread 2 calls post() while the
Thread 1 is not finished yet, so

the execution interleave

Thread 2Thread 1

200

50

50

200

Balance

Post(int v) // v=-150

• Balance = 200
• Balance -150

• Balance = 50

Post (int v) //v=-150

• Balance = 200
• Balance - 150
• Balance =50

How Could this Happen? – Post()

You subtracted but didn’t
write the result yet

You subtracted but didn’t
write the result yet
You write balance value 50

You write balance value 50

Thread 1 Thread 2

Ti
m

e

Read value

Read value

Source of the problem

• Threads can be arbitrarily
interleaved

• Some interleavings are NOT
correct

• Java provides
synchronization mechanism
to restrict the interleavings

How to Resolve it

Synchronization: Restricting Intervealings

Synchronization serves two
purposes:

• Ensure safe threads access for
shared updates/resources –
Avoid race conditions.

• Coordinate actions of threads
– Parallel computation – Event
notification

Multiple Threads access to a shared
resource is Safe only if:
• All accesses have no effect on resource,

– e.g., reading a variable
• All accesses are atomic
• Only one access at a time: mutual exclusion

Synchronization: Restricting Intervealings
Mutual Exclusion
• Prevent more than one thread from accessing critical section at a

given time
• Once a thread is in the critical section, no other thread can enter that

critical section until the first thread has left the critical section.
• No interleavings of threads within the critical section
• Serializes access to section

Photo-Credit: http://www.delphicorner.f9.co.uk/articles/op4.htm

How to Synchronize? – Mutual Exclusion In Java

• Identify critical sections in code
• Add Synchronized keyword on critical

sections
• one thread can be executing it at any

one time

Is this Good
Enough??

ATM Thread Logic

Post() method in the Account class

Deposit or withdraw amount >
-150

val=-150

acc.getbal()+val > 0 //yes

acc.post(-150)

your balance is -100

Ti
m

e
Activity Trace 2 of ATMs:
Is it Fixed Now?

Deposit or withdraw amount >

-150
 val= -150

acc.getbal()+val > 0 // yes

acc.post(-150)

your balance is -100

Balance

Thread 2 calls post only when
Thread 1 returns from post

Thread 1 Thread 2

200

200

50

-100

How to Synchronize? – Block Synchronization

Synchronized Methods execute the body of the method as an atomic unit.

May need to synchronize not only the method but a lot more in there;
• Synchronize an entire code region where an object is manipulated and execute

this code as an atomic unit
• For this, you have to do Block Synchronization
• Synchronized keyword takes as a parameter an object that the system needs to

obtain lock for, before it continues

Let’s Lock the account
starting from when a

transaction request is made
until response it sent to user

your account balance is 200

Deposit or withdraw amount >

-150

val=-150

Synchronized(acc)

acc.getbal()+val > 0 //No

Throw Exception()

Ti
m

e
Activity Trace 2 of ATMs:
Is it Fixed Now?

your account balance is 200

Deposit or withdraw amount >

-150

 val= -150

Synchronized(acc)

acc.getbal()+val > 0 // yes

acc.post(-150)

your balance is 50

Balance

Thread 2 starts the code
inside the synchronized block
only when Thread 1 is done

Thread 1 Thread 2

200

50

50

How to Synchronize? – Even Bigger
Synchronization Blocks

Let’s Lock the account
starting from when a

transaction request is made
response it sent to user

Activity Trace 2 of ATMs:
Is it Fixed Now?

Account ID > Hend

Password > 1234

synchronized(acc)

out.println("your balance is " + acc.getbal());

your balance is 200

Deposit or withdraw amount >

Account ID > Hend

Password > 1234

synchronized(acc)

Ti
m

e

Thread 1 Thread 2

Concurrency Issues - Account Transfer Example

Account Transfer-
Execution Trace

Sana -> Abdalla

synchronized(from) {

if (from.getbal() > val)

from.post(-val);

synchronized(to)

Abdalla -> Sana

synchronized(from) {

if (from.getbal() > val)

from.post(-val);

synchronized(to)

Ti
m

e

Sana wants to transfer 10 riyals to Abdalla
Abdalla wants to transfer 20 riyals to Sana

Will our code always work?

How to fix?

Avoiding deadlocks

• Cycle in locking graph = deadlock
• Standard solution: canonical order for locks

• Acquire in increasing order
• Release in decreasing order

• Ensures deadlock-freedom, but not always easy to do

Photo credit: https://www.sqlshack.com/what-is-a-sql-server-deadlock/

Abdalla

Abdalla’s
account

Sana

Sana’s
account

Avoiding deadlocks through ranking–
Account Transfer Example

Sana

Sana’s
account

Abdalla

Abdalla’s
account

(1) (2)

(3) (4)

Let’s Apply Ranking

Account Transfer-
Execution Trace – Is it Fixed

Sana -> Abdalla

synchronized(SanaAccount)

synchronized(AbdallAccount)

if (SanaAccount.getbal() > val)

SanaAccount.post(-val)

AbdallaAccount.post(val)

Abdalla -> Sana

Synchronized(SanaAccount)

Ti
m

e

Sana wants to transfer 10 riyals to Abdalla
Abdalla wants to transfer 20 riyals to Sana

Suppose Sana’s
account has
higher rank

synchronized(AbdallaAccount)
if (AbdallaAccount.getbal() > val)
AbdallaAccount.post(-val)
SanaAccount.post(val)

Outline

• Concurrent Programming Introduction
• Defining Concurrency?
• Concurrency versus parallelism
• Why Concurrency?
• Concurrency in Java

• Ensuring Safety in Concurrent Programs
• Synchronization
• Bank Use Case Example: using abstract shared memory

• More on Concurrency

Potential Concurrency Problems

• Deadlock
• Two or more threads stop and wait for each other

• Livelock
• Two or more threads continue to execute, but make

no progress toward the ultimate goal.
• Starvation

• Some thread gets deferred forever.
• Lack of fairness

• Each thread gets a turn to make progress.
• Race Condition

• Some possible interleaving of threads results in an
undesired computation result

More on Concurrency in Java

• Semaphores
• Blocking & non-blocking queues
• Concurrent hash maps
• Copy-on-write arrays
• Exchangers
• Barriers
• Futures
• Thread pool support

Check the
Java.util.concurrent

 Java Package!

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html

Interesting Ongoing Research on Concurrency

• Automatic parallelizers (e.g. Parsynt)
• Verification of concurrent programs (e.g. Duet)
• Concurrent program testing (e.g. Penelope)
• PL approached to deadlock freedom

http://www.cs.toronto.edu/%7Evictorn/parsynt/index.html
http://duet.cs.toronto.edu/
https://cs.illinois.edu/%7Esorrent1/penelope/publications

Recap

• Concurrency and Parallelism are important
concepts in Computer Science

• It can be very hard to understand and debug
concurrent programs

• Parallelism is critical for high performance
• From Supercomputers in national labs to Multicores

and GPUs on your desktop
• Concurrency is the basis for writing parallel

programs
• Next Recitation: Project 2

Credits

• The bank use case code and some slides are taken from 6.189 IAP
2007 MIT concurrent programming lecture

	15-440 � Distributed Systems�Recitation 6
	Slide Number 2
	Outline
	Outline
	From Sequential To Concurrent
	Concurrency vs. Parallelism
	Implementing/Executing Multiple Threads
	Why Concurrency?
	Concurrency in Java
	Concurrency in Javas - Steps
	Outline
	Bank Example
	Bank Example- With 1 ATM
	Bank Example- Multiple ATMs
	Activity Trace 1 of ATMs
	Activity Trace 2 of ATMs
	Activity Trace 2 of ATMs – Zoomed In
	How Could this Happen? – Post()
	Source of the problem
	Synchronization: Restricting Intervealings
	Synchronization: Restricting Intervealings �Mutual Exclusion
	How to Synchronize? – Mutual Exclusion In Java
	Activity Trace 2 of ATMs: �Is it Fixed Now?
	How to Synchronize? – Block Synchronization
	Activity Trace 2 of ATMs: �Is it Fixed Now?
	How to Synchronize? – Even Bigger Synchronization Blocks
	Activity Trace 2 of ATMs: �Is it Fixed Now?
	Concurrency Issues - Account Transfer Example
	Account Transfer- �Execution Trace
	Avoiding deadlocks
	Avoiding deadlocks through ranking– �Account Transfer Example
	Account Transfer- �Execution Trace – Is it Fixed
	Outline
	Potential Concurrency Problems
	More on Concurrency in Java
	Interesting Ongoing Research on Concurrency
	Recap
	Credits
	Slide Number 39

