
15-440
 Distributed Systems

Recitation 8

Slides By: Hend Gedawy
& Previous TAs

• PS3 Due Today
• P2 Due October 24

• (next Tuesday)

Announcements

Outline
• Project 2 Objectives Recap
• Dining Philosophers & Deadlocks
• Synchronization in Project 2
• Implementing Synchronization in Java

Project 2 Objectives: Reminder

1. Devise and apply a synchronization algorithm that:
 achieves correctness while sharing files

 and ensures fairness to clients.

2. Devise and apply a replication algorithm that:
 achieves load-balancing among storage servers

 and ensures consistency of replicated files.

Project 2 Objectives: Reminder

1. Devise and apply a synchronization algorithm that:
 achieves correctness while sharing files

 and ensures fairness to clients.

2. Devise and apply a replication algorithm that:
 achieves load-balancing among storage servers

 and ensures consistency of replicated files.

Outline
• Project 2 Objectives Recap
• Dining Philosophers & Deadlocks
• Synchronization in Project 2
• Implementing Synchronization in Java

Dining Philosophers

One of the classic problems
used to describe

synchronization issues in
accessing shared resources

by multiple entities
 and illustrate techniques

for solving them.

Dining Philosophers
• 5 Silent philosophers (P1 - P5)
• Actions: Thinking and Eating
• 5 Forks to share (F1 - F5)

• Each Pi needs a pair of forks
• When Pi is done eating, he is back

to thinking and puts back his forks

Goal: come up with a scheme/protocol that
helps the philosophers achieve their goal of eating

and thinking without getting starved to death

Dining Philosophers

Step 1: think until the left fork is available; when it is, pick up;

Step 2: think until the right fork is available; when it is, pick up;

Step 3: when both fork are held, eat for some time;

Step 4: then, put the right fork down;

Step 5: then, put the left fork down;

Step 6: repeat from the beginning

Dining Philosophers
A concurrent system with a need for synchronization, should ensure

Correctness

Dining Philosophers
A concurrent system with a need for synchronization, should ensure

Correctness
No two philosophers

should be using the same
forks at the same time.

Dining Philosophers
A concurrent system with a need for synchronization, should ensure

Correctness Efficiency
No two philosophers

should be using the same
forks at the same time.

Dining Philosophers
A concurrent system with a need for synchronization, should ensure

Correctness Efficiency
No two philosophers

should be using the same
forks at the same time.

Philosophers do not wait
too long to pick-up forks
when they want to eat.

Dining Philosophers
A concurrent system with a need for synchronization, should ensure

Correctness Efficiency Fairness
No two philosophers

should be using the same
forks at the same time.

Philosophers do not wait
too long to pick-up forks
when they want to eat.

Dining Philosophers
A concurrent system with a need for synchronization, should ensure

Correctness Efficiency Fairness
No two philosophers

should be using the same
forks at the same time.

Philosophers do not wait
too long to pick-up forks
when they want to eat.

No philosopher should be
unable to pick up forks

forever and starve

Pseudocode

What’s wrong
with this code

Dining Philosophers

Dining Philosophers

A deadlock is a
situation where the

progress of a system is
halted as each process
is waiting to acquire a
resource held by some

other process.

Dining Philosophers

Dining Philosophers
A concurrent system with a need for synchronization, should ensure

Correctness Efficiency Fairness
No two philosophers

should be using the same
chopsticks at the same

time.

Philosophers do not wait
too long to pick-up

chopsticks when they want
to eat.

No philosopher should be
unable to pick up

chopsticks forever and
starve

How do we fix
this?

Dining Philosophers –
Handling the Deadlock of Circular Waits

for (int i = 0; i < philosophers.length; i++) {
 Object leftFork = forks[i];

Object rightFork = forks[(i+1) % forks.length];
philosophers[i] = new Philosopher(leftFork, rightFork);
Thread t = new Thread(philosophers[i], "Philosopher " + (i+1));
t.start();

}

Initial Protocol

Philosopher (Object firstForkToPick, Object SecondForkTpPick)

Dining Philosophers –
Handling the Deadlock of Circular Waits

for (int i = 0; i < philosophers.length; i++) {
 Object leftFork = forks[i];
 Object rightFork = forks[(i + 1) % forks.length];
 if (i == philosophers.length - 1) {
 // The last philosopher picks up the right fork first
 philosophers[i] = new Philosopher(rightFork, leftFork);
 } else {
 philosophers[i] = new Philosopher(leftFork, rightFork);
 }

 Thread t = new Thread(philosophers[i], "Philosopher " + (i + 1));
 t.start();
 }

Breaking the Waiting Circle

Philosopher (Object firstForkToPick, Object SecondForkTpPick)

Deadlocks-
Account Transfer Example

Sana -> Abdalla

synchronized(from) {

if (from.getbal() > val)

from.post(-val);

synchronized(to)

Abdalla -> Sana

synchronized(from) {

if (from.getbal() > val)

from.post(-val);

synchronized(to)

Ti
m

e

Sana wants to transfer 10 riyals to Abdalla
Abdalla wants to transfer 20 riyals to Sana

Will our code always work?

How to fix?

Abdalla

Abdalla’s
account

Sana

Sana’s
account

Deadlocks-
Account Transfer Example Resolution

Sana -> Abdalla

synchronized(SanaAccount)

synchronized(AbdallAccount)

if (SanaAccount.getbal() > val)

SanaAccount.post(-val)

AbdallaAccount.post(val)

Abdalla -> Sana

Synchronized(SanaAccount)

Ti
m

e

Sana wants to transfer 10 riyals to Abdalla
Abdalla wants to transfer 20 riyals to Sana

Fix: Apply Ranking to
shared resources and

locks should be acquired
in order based on rank

Suppose Sana’s account
has higher rank

synchronized(AbdallaAccount)
if (AbdallaAccount.getbal() > val)
AbdallaAccount.post(-val)
SanaAccount.post(val)

Outline
• Project 2 Objectives Recap
• Dining Philosophers & Deadlocks
• Synchronization in Project 2
• Implementing Synchronization in Java

Project 2: Synchronization
• Reader & Writer clients acquire lock before invoking the method, and release

the lock after they are done
1. Reader:

 Reader first requests a read/non-exclusive/shared lock

 Multiple readers can acquire a read lock simultaneously

2. Writer:
 Writer first requests a write/exclusive lock

 Only one writer can acquire a write lock at a time

3. Order:
 Readers and writers are queued and served in the FIFO order

Project 2: Synchronization

Naming Server grants a reader or
writer read/shared locks on all
the directories in the path to
prevent modifications

Naming Server then grants the
requester a shared lock if it is a
reader or an exclusive lock if it is
a writer to the file

shared
lock

shared
lock

shared
lock

shared
lock for a

reader

Exclusive
lock for a

writer

Outline
• Project 2 Objectives Recap
• Dining Philosophers & Deadlocks
• Synchronization in Project 2
• Implementing Synchronization in Java

Thread Synchronization in Java
• Synchronized Block

• Using synchronized keyword to define a critical section

• Lock APIs
• Using Lock interface in the java.util.concurrent.lock package

• Semaphores
• Using Semaphore class in the java.util.concurrent.Semaphore package

https://docs.oracle.com/javase%2F7%2Fdocs%2Fapi%2F%2F/java/util/concurrent/locks/Lock.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html

Thread Synchronization in Java
• Synchronized Block

• Using synchronized keyword to define a critical section

• Lock APIs
• Using Lock interface in the java.util.concurrent.lock package

• Semaphores
• Using Semaphore class in the java.util.concurrent.Semaphore package

https://docs.oracle.com/javase%2F7%2Fdocs%2Fapi%2F%2F/java/util/concurrent/locks/Lock.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html

Synchronized Block

Thread Synchronization in Java
• Synchronized Block

• Using synchronized keyword to define a critical section

• Lock APIs
• Using Lock interface in the java.util.concurrent.lock package

• Semaphores
• Using Semaphore class in the java.util.concurrent.Semaphore package

https://docs.oracle.com/javase%2F7%2Fdocs%2Fapi%2F%2F/java/util/concurrent/locks/Lock.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html

Locks– Lock Usage
Lock lock = ...;

if (lock.tryLock()) {
try {
// manipulate protected state
} finally {
 lock.unlock();
}

} else {
 // perform alternative actions
}

Lock lock = ...;

lock.lock();
try {

// manipulate protected state
} finally {

lock.unlock();
}

The thread that calls Lock first becomes the owner,
and it is the only thread that can release the lock

Locks vs. Synchronized blocks
Synchronized Blocks Locks

Fully contained within a method Can have lock() and unlock() operation in
separate methods

Rigid, any thread can acquire the lock
once released, no preference can be

specified

Flexible; we can prioritize waiting
threads for example

A thread always gets blocked if it can't
get an access to the synchronized block

The Lock API provides tryLock() non-
blocking method. The thread acquires

lock only if it's available and not held by
any other thread.

A thread which is in “waiting” state to
acquire the access to synchronized

block, can't be interrupted

The Lock API provides a method
lockInterruptibly() which can be used to
interrupt the thread when it's waiting

for the lock

Locks– Lock API
Method Description

void lock() Acquire the lock if it's available; if the lock isn't
available a thread gets blocked until the lock is
released

void lockInterruptibly() similar to the lock(), but it allows the blocked thread
to be interrupted and resume the execution through
a thrown java.lang.InterruptedException

boolean tryLock() non-blocking version of lock() method; it attempts to
acquire the lock immediately. It returns true if locking
succeeds; false otherwise.

boolean tryLock(long timeout,
TimeUnit timeUnit)

similar to tryLock(), except it waits up the given
timeout before giving up trying to acquire the Lock

void unlock() unlocks the Lock instance

Locks– Read/Write Locks

The rules for acquiring the ReadLock or WriteLock by a thread:

•Read Lock (Shared)– If no thread acquired the write lock or
requested for it, multiple threads can acquire the read lock.

•Write Lock (Exclusive)– If no threads are reading or writing,
only one thread can acquire the write lock.

Locks–
Read/Write Locks

ReadWriteLock Interface

Lock Interface

ReentrantReadWriteLock Class

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReadWriteLock.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html

Locks– Using ReentrantReadWriteLock
Class

ReadWriteLock readWriteLock = new ReentrantReadWriteLock();

readWriteLock.readLock().lock();

// multiple readers can enter this section
// if not locked for writing,
// and not writers waiting to lock for writing.

readWriteLock.readLock().unlock();

readWriteLock.writeLock().lock();

// only one writer can enter this section,
// and only if no threads are currently reading.

readWriteLock.writeLock().unlock();

Locks– ReentrantReadWriteLock Class
Example

public class SynchronizedHashMapWithReadWriteLock {

Map<String,String> syncHashMap = new HashMap<>();
ReadWriteLock lock = new ReentrantReadWriteLock();

Lock writeLock = lock.writeLock();

Lock readLock = lock.readLock();

//...

public void put(String key, String value) {
try {

writeLock.lock();
syncHashMap.put(key, value);

} finally {
writeLock.unlock();

}
}

Locks– ReentrantReadWriteLock Class
Example

public String remove(String key){
try {

writeLock.lock();
return syncHashMap.remove(key);

} finally {
writeLock.unlock();

}
}

public String get(String key){
try {

readLock.lock();
return syncHashMap.get(key);

} finally {
readLock.unlock();

}
}

Locks– Locks with Conditions
• The Condition class provides the ability for a thread to wait for some

condition to occur while executing the critical section.
• This can occur when a thread acquires the access to the critical

section but doesn't have the necessary condition to perform its
operation

• Traditionally Java provides wait(), notify() and notifyAll() methods for
thread intercommunication.

• Conditions have similar mechanisms, but in addition, we can specify multiple
conditions

Example?

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html

Locks– Locks with Conditions

Locks– Locks with Conditions Example

public class ReentrantLockWithCondition {

Stack<String> stack = new Stack<>();
int CAPACITY = 5;

ReentrantLock lock = new ReentrantLock();
Condition stackEmptyCondition = lock.newCondition();
Condition stackFullCondition = lock.newCondition();

Locks– Locks with Conditions Example

public void pushToStack(String item){
try {

lock.lock();
while(stack.size() == CAPACITY) {

stackFullCondition.await();
}
stack.push(item);
stackEmptyCondition.signalAll();

} finally {
lock.unlock();

}
}

//wait for a signal that the stack isn’t full

//Send a signal that the stack isn’t empty

Locks– Locks with Conditions Example

public String popFromStack() {
try {

lock.lock();
while(stack.size() == 0) {

stackEmptyCondition.await();
}
return stack.pop();

} finally {
stackFullCondition.signalAll();
lock.unlock();

}

}

//wait for a signal that the stack isn’t empty

//Send a signal that the stack isn’t full

Thread Synchronization in Java
• Synchronized Block

• Using synchronized keyword to define a critical section

• Lock APIs
• Using Lock interface in the java.util.concurrent.lock package

• Semaphores
• Using Semaphore class in the java.util.concurrent.Semaphore package

https://docs.oracle.com/javase%2F7%2Fdocs%2Fapi%2F%2F/java/util/concurrent/locks/Lock.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html

Semaphores
• Work on the concept of permits
• A semaphore is initialized with a certain number of permits, which

• depends on the problem at hand
• usually set to the number of resources available

• When a thread wants to access a shared resource, it acquires a permit and releases it when it is
done

• Threads that couldn’t acquire permits are queued

There are 10
tables in a
restaurant,
and you are
managing
access to these
tables

Semaphores - API
Method/Constructor Description

Semaphore(int permits, boolean fair) Creates a Semaphore with the given
number of permits and the given fairness
setting

acquire() Acquires a permit; blocks until one is
available

acquire(int permits) Acquires the given number of permits from
this semaphore, blocking until all are
available

tryAcquire() Return true if a permit is available
immediately and acquire it; otherwise return
false

availablePermits() Return number of current permits available
drainPermits() Acquires and returns all permits that are

immediately available

Blocking

Non-Blocking

ensures the order in which the queued
requesting threads acquire permits

(based on their waiting time)

BinarySemaphores- Mutex
Mutex acts as a binary
semaphore (i.e. only one
permission at a time),

We can use it to
implement mutual
exclusion.

Semaphore mutex = new Semaphore(1);
try {
 mutex.acquire();
 assertEquals(0, mutex.availablePermits());
} catch (InterruptedException e) {
 e.printStackTrace();
} finally {
 mutex.release();
 assertEquals(1, mutex.availablePermits());
}

https://www.baeldung.com/cs/what-is-mutex

BinarySemaphores
• Is a type of signaling mechanism,
• provides a non-ownership-based

signaling mechanism for mutual
exclusion.

• Any thread can call Acquire or
Release

• Therefore, any thread can release
the permit for a deadlock recovery
of a binary semaphore.

• a higher-level synchronization
mechanism by allowing a custom
implementation of a locking
mechanism and deadlock recovery

• A Semaphore can be used as a
queue of blocked threads that are
waiting for a condition to be true.

• is a locking mechanism.

• Provides a reentrant mutual exclusion with
owner-based locking capabilities and is useful
as a simple mutex.

• The thread who has the lock calls unlock

• On the contrary, deadlock recovery is difficult
to achieve in the case of a reentrant lock. For
instance, if the owner thread of a reentrant
lock goes into sleep or infinite wait, it won’t
be possible to release the resource, and a
deadlock situation will result.

• a low-level synchronization with a fixed
locking mechanism.

vs. Locks

Credits
This recitation was inspired by multiple Baeldung tutorials:
Readers-writers problem
The Dining Philosophers Problem
Locks in Java
Semaphores in Java
Semaphores in Java (2)
Mutex
https://crystal.uta.edu/~ylei/cse6324/data/semaphore.pdf

https://en.wikipedia.org/wiki/Readers%E2%80%93writers_problem#Second_readers%E2%80%93writers_problem
https://www.baeldung.com/java-dining-philoshophers
https://www.baeldung.com/java-concurrent-locks
https://www.baeldung.com/java-semaphore
https://www.geeksforgeeks.org/using-semaphore-to-protect-more-than-one-copy-of-a-resource-in-java/
https://www.baeldung.com/cs/what-is-mutex
https://crystal.uta.edu/%7Eylei/cse6324/data/semaphore.pdf

	15-440 � Distributed Systems�Recitation 8
	Slide Number 2
	Outline
	Project 2 Objectives: Reminder
	Project 2 Objectives: Reminder
	Outline
	Dining Philosophers
	Dining Philosophers
	Dining Philosophers
	Dining Philosophers
	Dining Philosophers
	Dining Philosophers
	Dining Philosophers
	Dining Philosophers
	Dining Philosophers
	Pseudocode
	Dining Philosophers
	Dining Philosophers
	Dining Philosophers
	Dining Philosophers
	Dining Philosophers – �Handling the Deadlock of Circular Waits
	Dining Philosophers – �Handling the Deadlock of Circular Waits
	Deadlocks- �Account Transfer Example
	Deadlocks- �Account Transfer Example Resolution
	Outline
	Project 2: Synchronization
	Project 2: Synchronization
	Outline
	Thread Synchronization in Java
	Thread Synchronization in Java
	Synchronized Block
	Thread Synchronization in Java
	Locks– Lock Usage
	Locks vs. Synchronized blocks
	Locks– Lock API
	Locks– Read/Write Locks
	Locks– �Read/Write Locks
	Locks– Using ReentrantReadWriteLock Class
	Locks– ReentrantReadWriteLock Class Example
	Locks– ReentrantReadWriteLock Class Example
	Locks– Locks with Conditions
	Locks– Locks with Conditions
	Locks– Locks with Conditions Example
	Locks– Locks with Conditions Example
	Locks– Locks with Conditions Example
	Thread Synchronization in Java
	Semaphores
	Semaphores - API
	BinarySemaphores- Mutex
	BinarySemaphores
	Slide Number 51
	Credits

