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Abstract—MapReduce is by far one of the most successful
realizations of large-scale data-intensive cloud computing plat-
forms. MapReduce automatically parallelizes computation by
running multiple map and/or reduce tasks over distributed data
across multiple machines. Hadoop is an open source implemen-
tation of MapReduce. When Hadoop schedules reduce tasks, it
neither exploits data locality nor addresses partitioning skew
present in some MapReduce applications. This might lead to
increased cluster network traffic. In this paper we investigate
the problems of data locality and partitioning skew in Hadoop.
We propose Center-of-Gravity Reduce Scheduler (CoGRS), a
locality-aware skew-aware reduce task scheduler for saving
MapReduce network traffic. In an attempt to exploit data
locality, CoGRS schedules each reduce task at its center-of-
gravity node, which is computed after considering partitioning
skew as well. We implemented CoGRS in Hadoop-0.20.2 and
tested it on a private cloud as well as on Amazon EC2. As
compared to native Hadoop, our results show that CoGRS
minimizes off-rack network traffic by averages of 9.6% and
38.6% on our private cloud and on an Amazon EC2 cluster,
respectively. This reflects on job execution times and provides
an improvement of up to 23.8%.

I. INTRODUCTION

The exponential increase in the size of data has led to a
wide adoption of parallel analytics engines such as MapRe-
duce [3]. MapReduce is becoming a ubiquitous program-
ming model. For instance, Rafique et al. employed MapRe-
duce on asymmetric clusters of asymmetric multi-core and
general purpose processors [27]. Mars [11] harnessed graph-
ics processors power for MapReduce. Phoenix [28] evalu-
ated MapReduce for multi-core and multiprocessor systems.
Other work promoted MapReduce frameworks for dedicated
data centers [3], [6], virtual machine clusters [12], [35] and
public resource-grids [2].

Compared to traditional programming models, such as
message-passing, MapReduce automatically and efficiently
parallelizes computation by running multiple map and/or
reduce tasks over distributed data across multiple machines.
Hadoop [6] is an open source implementation of MapRe-
duce. It relies on its own distributed file system called
HDFS (Hadoop Distributed File System), which mimics
GFS (Google File System) [5], to partition data into fixed
equal-size chunks and distribute them over cluster machines.
One of Hadoop’s basic principles is: “moving computa-
tion towards data is cheaper than moving data towards
computation”. Consequently, Hadoop attempts to schedule

map tasks in the vicinity of input chunks seeking reduced
network traffic in an environment characterized by scarcity
in network bandwidth.

In contrast to map task scheduling, Hadoop breaks its
above basic principle when it schedules reduce tasks. This
is mainly because the input to a reduce task is typically
the output of many map tasks generated at multiple nodes,
while the input to a map task exists at a solo node. With
reduce task scheduling, once a slave (or a Task Tracker (TT)
in Hadoop’s parlance), polls for a reduce task at the master
node, (referred to as Job Tracker (JT)), JT assigns TT a
reduce task, R, irrespective of TT’s network distance locality
from R’s feeding nodes1. This might lead to an excessive
data shuffling and performance degradation.

Map and reduce tasks typically consume large amount
of data. In our experiments, we observed that the total
intermediate output (or total reduce input) size is sometimes
equal to the total input size of all map tasks (e.g. sort) or
even larger (e.g., 44.2% for K-means)2. Similar observations
were reached in [10], [13]. For this reason, optimizing the
placement of reduce tasks to save network traffic becomes
as essential as optimizing the placement of map tasks, which
is already well understood and implemented in Hadoop
systems.

Existing Hadoop’s reduce task scheduler is not only
locality unaware, but also partitioning skew unaware. As
defined in [13], partitioning skew refers to the significant
variance in intermediate keys’ frequencies and their distri-
bution across different data nodes. In our experiments, we
observed partitioning skew to exist within certain Hadoop
applications. Partitioning skew causes a shuffle skew where
some reduce tasks receive more data than others. The shuffle
skew problem can degrade performance because a job might
get delayed by a reduce task fetching large input data. The
node at which a reduce task is scheduled can highly miti-
gate the shuffle skew problem. In essence, the reduce task
scheduler can determine the pattern of the communication
traffic on the network, affect the quantity of shuffled data,
and influence the runtime of MapReduce jobs.

Informed by the success and the increasing prevalence of

1A feeding node of a reduce task, R, is a node that hosts at least one of
R’s feeding map tasks.

2Our experimentation environment and all our benchmarks are described
in Section VI.



MapReduce, this paper explores the locality and the parti-
tioning skew problems present in the current Hadoop imple-
mentation and proposes Center-of-Gravity Reduce Scheduler
(CoGRS), a locality-aware skew-aware reduce task scheduler
for MapReduce. CoGRS attempts to schedule every reduce
task, R, at its center-of-gravity node determined by the
network locations of R’s feeding nodes and the skew in the
sizes of R’s partitions. The network is typically a bottleneck
in MapReduce-based systems. By scheduling reducers at
their center-of-gravity nodes, we argue for reduced network
traffic which can possibly allow more MapReduce jobs to
co-exist on the same system. CoGRS controllably avoids
scheduling skew, a situation where some nodes receive more
reduce tasks than others, and promotes pseudo-asynchronous
map and reduce phases. Evaluations show that CoGRS is
superior to native Hadoop.

In this work we make the following contributions:
• We describe and motivate the importance of considering

data locality and partitioning skew in MapReduce task
scheduling. We propose a mechanism that addresses
both problems and demonstrate the benefits it offers to
MapReduce-based systems.

• We implemented CoGRS in Hadoop 0.20.2 and con-
ducted a set of experiments to evaluate its potential on
a private homogenous cluster as well as on a shared
heterogeneous cluster at Amazon EC2. On our private
cloud, we observed that CoGRS successfully increases
node-local data by 34.5% and decreases rack-local and
off-rack data by 5.9% and 9.6%, on average, versus
native Hadoop. Furthermore, we found that CoGRS
increases node-local and rack-local data by 57.9%
and 38.6%, respectively, and decreases off-rack data
by 38.6%, on average, versus native Hadoop on an
Amazon EC2 cluster.

The rest of the paper is organized as follows. A back-
ground on Hadoop network topology is given in Section II.
Section III discusses how data locality is overlooked in
Hadoop. We make the case for partitioning skew in Sec-
tion IV. CoGRS’s design is detailed in Section V. Sec-
tion VI shows our evaluation methodology and results. In
Section VII we provide a summary of prior work. Lastly,
we conclude and discuss opportunities for future work in
Section VIII.

II. BACKGROUND

Hadoop assumes a tree-style network topology. Nodes are
spread over different racks contained in one or many data
centers. A salient point is that the bandwidth between two
nodes is dependent on their relative locations in the network
topology. For example, nodes that are on the same rack
have higher bandwidth between them as opposed to nodes
that are off-rack. Rather than measuring bandwidth between
two nodes, which might be difficult in practice, Hadoop
adopts a simple approach via: (1) representing the bandwidth

between two nodes as a measure of distance, (2) assuming
the distance from a node to its parent is 1, and (3) calculating
the distance between any two nodes by adding up their
distances to their closest common ancestor.

III. DATA LOCALITY IN HADOOP

As described earlier, Hadoop does not consider data locality
when scheduling reduce tasks. We define a total network

distance of a reduce task, R (TNDR), as
n∑

i=0

NDiR where n

is the number of partitions that are fed to R from n feeding
nodes and ND is the network distance required to shuffle
a partition i to R. Clearly, as TNDR increases, more time
is taken to shuffle R’s partitions and additional network
bandwidth is dissipated. Fig. 1 lists the nodes at which
each map task Mi and reduce task Ri of the wordcount
benchmark3 were scheduled by native Hadoop. In this case,
every map task is feeding every reduce task. Besides, every
map task is scheduled at a distinct node. Nodes 1-7 are
encompassed in one rack and the rest in another rack.
Hadoop schedules reduce tasks R0, R1, and R2 at nodes
13, 12, and 3, respectively. This results in TNDR0 = 30,
TNDR1 = 32, and TNDR2 = 34. If, however, R1 and R2 are
scheduled at nodes 11 and 8, respectively, this would result
in TNDR1 = 30 and TNDR2 = 30. Hadoop, in its present
design, is incapable of making such controlled scheduling
decisions.
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Figure 1. The nodes at which native Hadoop scheduled each map task
and reduce task of the wordcount benchmark.

IV. PARTITIONING SKEW IN MAPREDUCE WORKLOADS

We now demonstrate the partitioning skew in each of our
utilized benchmarks. Fig. 2 shows the sizes of partitions
delivered by each feeding map task to each reduce task in
sort1, sort2, wordcount and K-means workloads (see Table II
for descriptions on these programs). Sort1 (Fig. 2(a)) utilizes
a uniform dataset, hence, it exhibits a partitioning uniformity
across reduce tasks, except for some partitions produced

3We ran wordcount five times and selected a random run.
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(a) Sort1
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(b) Sort2
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(d) K-means

Figure 2. The sizes of partitions produced by each feeding map task to each reduce task in sort1, sort2, wordcount, and K-means.

by few map tasks. To explain this, the RandomWriter4

generator, used by sort, generates files (not a single file)
across cluster nodes. Each generated file at a node is always
broken up into fixed-size chunks by HDFS, although the
file size might not be a multiple of the chosen chunk size.
As such, the content encapsulated in the last chunk of
each file may contain less data than the other file chunks.
Consequently, the map tasks that will process these smaller
chunks will produce less intermediate data than the other
map tasks that will process fully filled chunks.

In contrast to sort1, sort2 (Fig. 2(b)) uses a non-uniform
dataset and reveals a significant discrepancy among partition
sizes of reduce tasks. Clearly, this might lead to a noteworthy
shuffle skew. For wordcount (Fig. 2(c)), we observe some
skew across reduce tasks, where reduce task 1 receives less
data than the other two reduce tasks. Finally, for K-means
(Fig. 2(d)) we only portray the first job as a representative of
the 5 jobs present in K-means (details about the workload
can be found in Section VI-A). K-means exhibits a non-
uniformity among partition sizes of reduce task 0 on one
hand, and reduce tasks 1 and 2 on the other hand. Reduce
task 0 receives most of its input data from most of the map
tasks, while reduce tasks 1 and 2 consume most of their data
from few map tasks. K-means behavior is contingent upon

4RandomWriter is used in Hadoop to generate random numbers, usually
for the sort benchmark program.

the selection of centroids as well as the adopted clustering
mechanism. To conclude, we observe that partitioning skew
exists in some MapReduce applications. Hadoop currently
does not address such a phenomenon.

V. THE COGRS TASK SCHEDULER

This section begins by first motivating the problem at hand
and then delving into the core of CoGRS, the center-of-
gravity idea. In order to integrate CoGRS into Hadoop, we
further discuss the constraint for that (i.e., early shuffle)
and suggest a solution (i.e., pseudo-asynchronous map and
reduce phases). Lastly, we describe and formally present
CoGRS’s algorithm.

A. A Motivating Example

Fig. 3 demonstrates a data center with two racks each
including 3 nodes. We assume a reduce task R with two
feeding nodes, Task Tracker 1 (TT1) and Task Tracker 2
(TT2). The goal is to schedule R at a requesting Task
Tracker. Assuming Task Trackers 1, 2, and 4 (i.e., TT1, TT2,
and TT4) poll for a reduce task at the Job Tracker (JT). JT
with the native Hadoop scheduler can assign R to any of the
requesting Task Trackers. If R is assigned to TT4, TNDR

will evaluate to 8. On the other hand, if R is assigned to TT1
or TT2, TNDR will be 2. As discussed earlier, a smaller total
network distance is supposed to produce less network traffic
and, accordingly, provide better performance.
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Figure 3. Options for scheduling a reduce task R with feeding nodes TT1
and TT2 in a data center with two racks (CS = core switch, RS = rack
switch, TT = Task Tracker, and JT = Job Tracker).

Assume now that map tasks at TT1 and TT2 in Fig. 3
generate partitions of sizes 100MB and 20MB, respectively,
both of which hash to R. If R is scheduled at TT2, 100MB
of data will be shuffled on the network. On the other hand, if
R is scheduled at TT1, only 20MB of data will be shuffled.
Though both TT1 and TT2 provide the minimal possible
TNDR, incorporating partitioning skew with locality places
less burden on the network by decreasing the shuffled traffic.
Therefore, a requirement emerges for a locality-aware and
skew-aware reduce task scheduler capable of scheduling
reduce tasks at suitable nodes that minimize total network
distances and save MapReduce network traffic.

B. CoGRS Design

1) Center-Of-Gravity (COG) and Weighted Total Network
Distance (WTND): To address data locality and partitioning
skew, CoGRS attempts to place every reduce task, R, at
a suitable node that minimizes TNDR. We propose that a
suitable node for R would be the center-of-gravity (COG)
node in accordance with the network locations of R’s
feeding nodes and the weights of R’s partitions. We define
the weight of a partition, P, needed by R, as the size of P
divided by the total sizes of all Ps needed by R. As pointed
out in the previous section, it is always desirable to shuffle
smaller partitions over larger ones. We accomplish this
objective by multiplying every P’s weight by the network
distance required to shuffle P. Thus, we introduce a new
metric called Weighted Total Network Distance (WTND)
and define it as follows:

Weighted Total Network Distance (WTND) Per Reduce

Task R =

n∑
i=0

NDiR × wi

where n is the number of partitions needed by R, ND is
the network distance required to shuffle a partition i to R,
and wi is the weight of a partition i. In principle, the COG
of R (COGR) is always one of R’s feeding nodes since it
is less expensive to access data locally than to shuffle them
over the network (this has been verified empirically as well).
Therefore, we designate COGR to be the feeding node of R

that provides the minimum WTND.
2) Early Shuffle and Pseudo-Asynchronous Map and Re-

duce Phases: To determine the COG node of a particular
reduce task, R (i.e., COGR), we first need to designate the
network locations of R’s feeding nodes. In essence, COGR

cannot be precisely determined until all the map tasks in R’s
job commit. This is due to the fact that the last committing
map task can still feed R. Waiting for all map tasks to
commit until we can start computing COGR (and subse-
quently trigger reduce task scheduling) might create some
side effects on Hadoop’s performance. Specifically, default
Hadoop starts scheduling reduce tasks before every map task
commits (by default after only 5% of map tasks commit).
This allows Hadoop to overlap the execution of map tasks
with the shuffling of intermediate data and, accordingly,
enhance the turnaround times of MapReduce jobs. We refer
to this technique as early shuffle. We evaluated several
benchmarks on native Hadoop by turning early shuffle on
and off (see Section VI). We found that Hadoop with early
shuffle on outperforms Hadoop with early shuffle off by an
average of 5.8%, and by up to 15.9%. This simply indicates
the importance of early shuffle on the overall achieved
Hadoop performance.

We suggest that to designate the network locations of R’s
feeding nodes, we might not need to wait for all map tasks
of R’s job to commit. This has been also suggested and
discussed in [9]. That is, we might be capable of determining
COGR without deferring shuffling data to reduce tasks until
the map phase is fully done. To describe that, assume, for
instance, a map task, M, that feeds only one reduce task,
R. In this case, M is confirmed to be a feeding map task
of R after processing only the first input key-value pair and
hashing it to R. Afterwards, M will not hash any data to any
other reduce task. Therefore, in such a case we need not wait
for M to commit before we can determine its consuming
reduce task. On the other hand, if M feeds multiple reduce
tasks, these reduce tasks can appear as consumers of M
at an early or later period of M’s processing time. As M
makes more progress, the probability for these reduce tasks
to appear as consumers of M increases. However, a certain
probability will remain for all or some of these reduce tasks
to appear at an early period of M’s processing time. We
rely on this fact about map tasks and promote computing
COGR after a percentage (not necessarily 5% as in default
native Hadoop) of map tasks commit, and then start shuffling
R’s required partitions. We denote this percentage as α and
refer to such an approach as pseudo-asynchronous map and
reduce phases approach.

Clearly, the value of α is a function of the given ap-
plication as well as the distribution of the input dataset.
In this work, we adopt a static determination of α per
application (which we refer to as the sweet spot of an
application). Locating sweet spots in a synergistic manner
is beyond the scope of this paper and has been set as a



main future direction. To this end, we note that although
CoGRS might delay the activation of early shuffle, such
a delay assists in leveraging enhanced data locality as a
result of allowing more accurate COG computations. Thus,
CoGRS compensates for the case by seeking greater network
bandwidth savings and potentially improving job execution
times.

Algorithm 1 CoGRS Algorithm
Input: RT : set of unscheduled reduce tasks

TT : the task tracker requesting a reduce task
Output: A reduce task R ∈ RT that

can be scheduled to run on TT

1: initialize two sets of potential reduce tasks to schedule at TT , setCOG = Φ
and setOthers = Φ

2: for every reduce task R ∈ RT do
3: calculate center of gravity COGR = min{WTNDR}
4: if TT = COGR then
5: add R to setCOG

6: else
7: calculate progress score PS of COGR =

max{progress scores of reduce task running at COGR}
8: if COGR is currently occupied && PS < β then
9: add R to setOthers

10: end if
11: end if
12: end for
13: if setCOG is not empty then
14: calculate most preferring reduce task Rp =

max{sizes of partitions held by COGR for preferring reduce task}
15: return Rp

16: else
17: if setOthers is not empty then
18: return reduce task R ∈ setOthers whose COG node is the closest to

TT
19: end if
20: end if
21: return null

3) CoGRS Algorithm: We suggest that every reduce task
prefers its COG node over any other node in the cluster.
Hence, when a Task Tracker node (say TTn) polls for a
reduce task, the Job Tracker (JT) checks if any reduce task
in the reduce task queue prefers TTn. If JT finds that there
are many reduce tasks who prefer TTn, it selects the one
that prefers TTn the most. We define the most preferring
reduce task as the one that consumes the largest input
partition at TTn so as to optimize for network traffic. On
the other hand, if JT does not find any preferring reduce
task, it can decide to reject TTn and wait for another
potential Task Tracker. If JT decides so, TTn may stay idle
though it has exposed its availability of running reduce tasks.
Accordingly, poor cluster utilization might be sustained. In
the meantime, some other Task Trackers may successfully
receive multiple reduce tasks leading thereby to a scheduling
skew. To address this problem, we propose not to reject TTn

and rather assign it a reduce task, R, whose COG node is
currently occupied (i.e., does not have any available reduce
slot) so as to avoid delaying R and improve cluster utilization
(via delegating work to an otherwise idle TTn). If multiple
Rs are found, we assign TTn an R whose COG node is the
closest to TTn among the other found Rs.

Giving up some locality for the sake of extracting more

parallelism and improving cluster utilization should be done
meticulously so as to avoid missing any locality opportunity.
An opportunity that can be exploited is when an occupied
COG node, N, will become available shortly. In such a case,
scheduling a reduce task, R, that prefers N at a different
requesting Task Tracker might not be a good idea. Therefore,
we suggest checking the progress score of N and verify
whether it will become available shortly before we delegate
its work to any other nearby Task Tracker. Existing Hadoop
monitors a task progress using a progress score between 0
and 1. We define the progress score of N, as the maximum
progress score among the progress scores of the reduce
tasks that are currently running at N. The reduce task that
corresponds to the maximum progress score will supposedly
finish earlier (and, hence, its slot will become available) than
any other reduce task running at N, thus its score is selected.
We compare the maximum progress score with a threshold
β between 0 and 1. If we find the score smaller than β,
we schedule R at a non-preferred nearby requesting Task
Tracker. Otherwise, we do not. As β increases, less locality
is achieved because more reduce tasks will be scheduled
at non-preferred Task Trackers. In contrary, as β decreases,
more locality is leveraged, but less parallelism is extracted.
Therefore, in addition to α described in Section V-B2, β
also contributes in locating applications’ sweet spots. In
summary, Algorithm. 1 formally describes CoGRS.

VI. QUANTITATIVE EVALUATION

A. Methodology

Table I
CLUSTER CONFIGURATION PARAMETERS

Category Configuration
Hardware

Chassis IBM BladeCenter H
Number of Blades 14
Processors/Blade 2 x 2.5GHz Intel Xeon

Quad Core (E5420)
RAM/Blade 8 GB RAM
Storage/Blade 2 x 300 GB SAS

Defined as 600 GB RAID 0
Virtualization Platform vSphere 4.1/ESXi 4.1

Software
VM Parameters 4 vCPU, 4 GB RAM

1 GB NIC
60 GB Disk (mounted at /)

450 GB Disk (mounted at /hadoop)
OS 64-Bit Fedora 13
JVM Sun/Oracle JDK 1.6, Update 20
Hadoop Apache Hadoop 0.20.2

We evaluate CoGRS against native Hadoop on our cloud
computing infrastructure and on Amazon EC2 [1]. Our
infrastructure is comprised of a dedicated 14 physical host
IBM BladeCenter H with identical hardware, software and
network capabilities. The BladeCenter is configured with the
VMware vSphere 4.1 virtualization environment. VMware
vSphere 4.1 [32] manages the overall system and VMware
ESXi 4.1 runs as the blades’ hypervisor. The vSphere system



was configured with a single virtual machine (VM) running
on each BladeCenter blade. Each VM is configured with 4
v-CPUs and 4GBs of RAM. The disk storage for each VM
is provided via two locally connected 300GB SAS disks.
The major system software on each VM is 64-bit Fedora
13 [4], Apache Hadoop 0.20.2 [6] and Sun/Oracle’s JDK
1.6 [16], Update 20. Table I summarizes our cloud hardware
configuration and software parameters. To employ Hadoop’s
network topology, blades 1-7 are connected to a 1 gigabit
switch, blades 8-14 to another 1 gigabit switch, and the two
switches are connected to a third 1 gigabit switch providing
a tree-style interconnectivity for all blades. All the switches
are physical.

In contrary to our cloud, Amazon does not expose the
network locations of EC2 instances required for enabling
Hadoop rack-awareness [7]. To tackle this problem, we use
the Netperf [22] benchmark and measure point-to-point TCP
stream bandwidths between all pairs of EC2 instances in any
Hadoop cluster we provision at Amazon. This allows us to
estimate the relative locality of instances and arrive at a
reasonable inference regarding the rack topology of a cluster.
The data obtained is subsequently plugged into Hadoop to
make it rack-aware.

Table II
BENCHMARK PROGRAMS

Benchmark Key Data Dataset Map Reduce
Frequency Distribution Size Tasks Tasks

sort1 Uniform Uniform 14 GB 238 25
sort2 Non-Uniform Non-Uniform 13.8 GB 228 25

wordcount Real Log Files Real Log Files 11 GB 11 3
K-means Random Random 5.2 GB 84 3

To evaluate CoGRS against native Hadoop, we use the
sort and the wordcount (with the combiner function be-
ing enabled) benchmarks from the Hadoop distribution as
well as the K-Means clustering workload from Apache
Mahout [21], an open-source machine learning library. Sort
and wordcount are two main benchmarks used for evaluating
Hadoop at Yahoo! [3], [35]. Besides, sort was utilized in
the MapReduce Google’s paper [3]. K-Means is a well-
known clustering algorithm for knowledge discovery and
data mining [10].

To test CoGRS with various types of datasets, we ran sort
over two datasets, one with uniform (the default) and another
with non-uniform keys’ frequencies and data distribution
across nodes. We refer to sort running on a uniform dataset
as sort1. To produce a non-uniform dataset we followed a
similar approach as in [13]. We modified the RandomWriter
in Hadoop to obtain a skew in keys’ frequencies and data
distribution with variances of 267% and 34%, respectively.
We refer to sort running on this non-uniform dataset as sort2.

The K-means clustering workload implements K-means,
an iterative algorithm that attempts to find K similar groups
in a given dataset via minimizing a mean squared distance
function. K-means assumes an initial list of K centroids
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Figure 4. Reduce traffic experienced by Hadoop with early shuffle on
(H ON), Hadoop with early shuffle off (H OFF), and CoGRS for sort1,
sort2, wordcount, and K-means benchmarks.

and an input dataset of samples with each sample being
represented as a d-dimensional vector. We generated a ran-
dom dataset of 2D data points, selected 4 random centroids,
and fixed that for all runs in our experiments. Furthermore,
we set 5 iterative jobs similar to [10]. Finally, we applied
wordcount to a set of real system log files. Table II illustrates
our utilized benchmarks. To account for variances across
runs we ran each benchmark 5 times.

B. Comparison with Native Hadoop

In this section, we run experiments on our private cloud. We
evaluate CoGRS against native Hadoop with early shuffle
on (H ON) and off (H OFF). Because CoGRS attempts to
locate a sweet spot for an application by scanning a range
of values through which it can activate early shuffle and
still achieve good locality, we found it insightful to illustrate
Hadoop’s behavior with early shuffle being natively enabled
(i.e., H ON) and totally disabled (i.e., H OFF). In addition,
for each of our benchmarks, we conducted a sensitivity study
through which we varied α over 7 values (i.e., {1.0, 0.9, 0.8,
0.6, 0.4, 0.2, 0.05}) and β over 4 (i.e., {1.0, 0.8, 0.4, 0.2}). In
total we got 28 {alpha, β} configurations. We located sweet
spots for wordcount, sort1, sort2, and K-means at {0.05,
0.4}, {0.05, 0.2}, {0.4, 1.0}, and {0.4, 0.4}, respectively. In
the following studies, we utilize these located sweet spots,
unless otherwise specified.

1) Network Traffic: As CoGRS’s main goal is to optimize
for shuffled data, we first start by demonstrating the network
traffic experienced by CoGRS as well as native Hadoop.
Fig. 4 shows a breakdown of network traffic as entailed by
H ON, H OFF, and CoGRS for all the benchmarks. Since
we ran each benchmark 5 times, we depict the best results for
each benchmark under each scheme. We modified Hadoop
0.20.2 to instrument reduce data and categorize it into
node-local, rack-local, and off-rack. As displayed, H OFF
maximizes node-local and rack-local data by averages of
19.3% and 5.1%, respectively versus H ON. Furthermore,
H OFF minimizes rack-local data by an average of 6.8%
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Figure 5. Execution Timelines for sort1, sort2, wordcount, and K-means (Map = map phase, Shuffle = shuffle stage, and Reduce = reduce stage).

as compared to H ON. Note that for optimizing network
traffic we ought to maximize node-local, maximize/minimize
rack-local, and minimize off-rack data. Rack-local data is
maximized after only minimizing off-rack data. However,
rack-local data is minimized or maximized after minimizing
off-rack data and maximizing node-local data.

Overall, H OFF surpasses H ON with respect to shuffled
data. This can be attributed mainly to the usage of a
resource estimator by Hadoop. In particular, Hadoop adopts
a resource estimator that estimates the input size of each
reduce task, R, before R is assigned to a requesting Task
Tracker, TT. If Hadoop finds that TT does not have enough
space to run R, R is not scheduled at TT. With H ON, map
tasks and reduce tasks share the same system resources.
Hence, the likelihood that Hadoop schedules reduce tasks
at TTs that demonstrate more available system resources
increases. For example, we observed that H ON schedules
every map task of the wordcount benchmark at a distinct
node (it has in total 11 map tasks) and 1 of the reduce tasks
at a feeding node (it has in total 3 reduce tasks). Conversely,
we realized that H OFF still schedules every map task of
wordcount at a distinct node, but the 3 reduce tasks at 3
feeding nodes. As such, H ON should incur more network
traffic.

On the other hand, CoGRS is superior to both, H ON and
H OFF. As shown in Fig. 4, on average, CoGRS maximizes
node-local data by 34.5% and minimizes rack-local and off-
rack data by 5.9% and 9.6% versus H ON. Furthermore, on

average, CoGRS maximizes node-local data by 14.3% and
minimizes rack-local and off-rack data by 0.5% and 1.6%
versus H OFF. Clearly, this is because CoGRS attempts to
schedule each reduce task at its COG node which is the
feeding node that provides the minimum WTND (see Sec-
tion V-B1 for details). For instance, we observed that CoGRS
schedules the 11 map tasks of the wordcount benchmark on
11 distinct nodes and the 3 reduce tasks on 3 feeding nodes
that provide the minimum WTND. We conclude that CoGRS
successfully reduces network traffic.

2) Execution Timelines: In order to understand the be-
haviors of our applications, we now illustrate in Fig. 5 the
overall times taken by the map phase as well as the shuffle
and the reduce stages in the reduce phase for each of the
benchmarks under CoGRS, H ON , and H OFF. We first
note that the overall time taken by the shuffle stage of a
workload includes waiting times as well as shuffling times.
A shuffling time occurs whenever a data shuffling is going
on. A waiting time occurs if no data shuffling is going on.
A waiting time is incurred as a result of waiting for at least
one partition to be available so that the shuffling process can
be restarted. Second, we note that the overall time taken by
the reduce stage of a workload also includes waiting times,
as well as reducing times. A reducing time occurs whenever
at least one reduce task is reducing its available input. As
necessitated by Hadoop, the input to a reduce task does not
become available for reduction unless it gets fully shuffled
and sorted. A waiting time in the reduce stage occurs if no



data reduction is going on. As long as at least one reduce
task is reducing its input data, no waiting time is incurred
on the overall time taken by the reduce stage. Lastly, we
note that the timer in the reduce stage is triggered exactly
upon starting the first reduction process in the stage. Hence,
it can be seen in Fig. 5 that the reduce bar always overlaps
with the shuffle bar.

With that being said, let us proceed by comparing H ON
versus H OFF. First it can be observed that H OFF always
shortens (by a little) the map phase when compared to
H ON for all benchmarks. This is because the map tasks
under H OFF do not share system resources with the reduce
tasks (early shuffle is halted) and, accordingly, they finish
faster. Second, H OFF always shortens the shuffle stage
because of avoiding any waiting time as compared to H ON.
Specifically, H OFF needs not wait for any partition to
become available due to the fact that all partitions will
be available after the map phase is done. Third, H OFF
might extend (e.g., sort1, sort2, and K-means) or shrink
(e.g., wordcount) the reduce stage time depending on when
a certain reduce input will be available (i.e., waiting times
might differ). The actual reducing times between H ON and
H OFF are always comparable.

By comparing CoGRS against H ON and H OFF, we
first notice that CoGRS also shortens (by a little) the map
phase when compared to H ON for all benchmarks. This is
mainly because CoGRS decreases the pressure on system re-
sources for the fact of exploiting data locality and addressing
partitioning skew. Second, for the benchmarks that exhibit
partitioning skew (i.e., sort2, wordcount, and K-means),
CoGRS reduces the response/finish time of the shuffle stage
versus H ON and H OFF. In essence, as partitioning skew
becomes more significant (e.g., sort2 and K-means), CoGRS
produces better results for being designed to intelligently
address such a problem. When the problem disappears (e.g.,
sort1), CoGRS does not manifest its potential noticeably.
Yet, for sort1 CoGRS shows a little worse finish time as
compared to H ON. This can be attributed to the overhead
incurred by CoGRS due to constantly attempting to locate
COG nodes. Finally, CoGRS might also extend (e.g., K-
means) or shrink (e.g., sort1, sort2, and wordcount) the
reduce stage time depending on when a certain reduce
input will be available. The actual reducing times between
CoGRS, H ON and H OFF are always comparable (as same
data is essentially reduced), but the waiting times might
differ. In summary, as compared to Hadoop, CoGRS is
capable of improving shuffle and reduce times, especially
when partitioning skew becomes significant.

3) Overall Performance: Fig. 6 shows the execution time
results for all our benchmarks under CoGRS, H ON, and
H OFF. We display the best, the worst, and the average
results for each program (as each was run 5 times). First,
when the gain attained by H ON due to overlapping data
shuffling with the map phase, offsets the loss caused by
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Figure 6. The execution times experienced by H ON, H OFF, and CoGRS
for sort1, sort2, wordcount, and K-means benchmarks (Min, Max, and
Average are the best, the worst, and the average-case execution times).

the potential increase in the amount of data shuffled, H ON
surpasses H OFF (e.g., sort1). Otherwise, H OFF outper-
forms H ON (e.g., wordcount). Second, though CoGRS
highly reduces the network traffic of wordcount as compared
to H ON and H OFF (see Fig. 4), this does not greatly
reflect on the overall performance. The reasons for this are
as follows: (1) wordcount is a map-bound program (See
Fig. 5(c)) while CoGRS mainly targets the reduce phase,
(2) the actual shuffle stage time in wordcount (demonstrated
by H OFF. Again, see Fig. 5(c)) is very small in contrast
to other phases (or stages) times, hence, an improvement
(or degradation) in the shuffle stage time will not mirror
visibly on the workload’s overall performance, and (3) most
of the shuffle stage time is overlapped with the map phase in
H ON, thus, not much room is left for CoGRS to optimize
for performance. On average, CoGRS outperforms H ON
by 3.2% and by up to 6.3%, and H OFF by 8.9% and by
up to 12.4%.

C. CoGRS on Amazon EC2

In this section, we conduct a scalability study of CoGRS and
native Hadoop on a shared heterogeneous cloud environment
using Amazon EC2. We provisioned three Hadoop clusters
with 8, 16, and 32 nodes each (all nodes were configured
using the m1.small instance) and experimented with native
Hadoop as well as CoGRS on each of the clusters. We
ran and collected results for one of our benchmarks, sort2,
using a 10GB dataset size. For CoGRS, we conducted a
sensitivity study and located sweet spots at {0.05, 1.0}, {0.2,
1.0}, and {0.6, 1.0} on the 8-instance, 16-instance, and 32-
instance clusters, respectively. We ran sort2 five times for
each CoGRS configuration as well as for native Hadoop.

As the number of nodes increases, the probability for
Hadoop to schedule a reduce task far from its center-of-
gravity node increases. In contrary, CoGRS adopts a more
informed strategy and attempts constantly to schedule reduce
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Figure 7. Reduce traffic and execution times experienced by CoGRS and
native Hadoop (H ON) for sort2 on Amazon EC2 clusters of sizes 8, 16,
and 32.

tasks at their center-of-gravity nodes irrespective of the clus-
ter size. Hence, CoGRS is expected to optimize more on cu-
mulative data center network traffic and, consequently, scale
better than Hadoop. Fig. 7(a) demonstrates increased savings
in network traffic under CoGRS versus native Hadoop as the
EC2 cluster is scaled up. Compared to native Hadoop, on
average, CoGRS maximizes node-local data by 1%, 32%,
and 57.9%, maximizes rack-local data by 7.8%, 1.3%, and
11.1%, and minimizes off-rack data by 2.3%, 10%, and
38.6% with 8-instance, 16-instance, and 32-instance clusters,
respectively. As depicted in Fig. 7(b), this translates to 1.9%,
7.4%, and 23.8% average reductions in job execution times
under CoGRS versus native Hadoop with 8-instance, 16-
instance, and 32-instance clusters, respectively. We conclude
that on Amazon EC2, CoGRS successfully reduces network
traffic and scales better than native Hadoop. In summary,
we found that for our utilized benchmarks, CoGRS always
reduces network traffic and improves MapReduce perfor-
mance, on a dedicated homogenous cluster and on a shared
heterogeneous cloud.

VII. RELATED WORK

In this short article, it is not possible to do justice to every
related scheme. As such, we only outline few of closely
related papers. To start with, we view Hadoop scheduling as
a two-level model and classify related work accordingly. At
the first level, job scheduling (e.g., Hadoop FIFO, Fair and

Capacity schedulers) deals with allocating resources to co-
located jobs. At the second level, task scheduling defines
how map and reduce tasks are actually assigned to map
and reduce slots (e.g., Hadoop attempts to assign map tasks
to map slots in proximity to corresponding splits). In the
presence of multiple jobs, a job scheduler is needed, while
a task scheduler is required even with only one running
job. CoGRS is a task scheduler, and akin to any other task
scheduler, is complementary to whichever job scheduler.

Ussop [2] employs MapReduce on public-resource grids
and suggests variable-size map tasks. LARTS [9] attempts
to collocate reduce tasks with the maximum required data.
LATE [35] proposes a scheduling algorithm for speculative
tasks robust to heterogeneity. HPMR [30] suggests inspect-
ing input splits in the map phase, and predicts to which
reduce task key-value pairs will be partitioned. The expected
data are assigned to a map task near the future reduce
task. Quincy [15] proposes a novel data flow graph-based
framework constructed on Dryad [14]. LEEN [13] reports
on the partitioning skew problem and promotes altering
Hadoop’s existing hash partitioning function in order to
alleviate the amount of data shuffled over the network.

While all of the above papers are proposals for task
schedulers, the following are examples of job schedulers.
CBHS [17] puts an emphasis on meeting jobs’ deadlines
via scheduling only jobs that can meet estimated deadlines.
DP [29] capitalizes on the existing Hadoop FIFO and fair-
share schedulers and applies a proportional share resource
allocation mechanism. Polo et al. [24] build upon the
Adaptive scheduler [25] and proposes a scheduler that can
make hardware-aware scheduling decisions and minimize
jobs’ completion times. HFS [34] suggests a job scheduling
algorithm based on waiting so as to achieve fairness and data
locality (for map tasks only). FLEX [33] extends HFS and
optimizes towards a variety of standard scheduling metrics
(e.g., deadline-based penalty functions). Phan et al. [23]
explore the feasibility of enabling real-time scheduling of
MapReduce jobs. Lastly, Tian et al. [31] suggest the Triple-
Queue scheduler that seeks better system utilization via
scheduling jobs based on (predicted) resource usage.

To that end, a large body of work has also reported on the
partitioning skew problem. For instance, SkewReduce [18]
scrutinized skew in feature extraction scientific applications
and promotes a new system for expressing feature extraction
on Hadoop. Kwon et al. [19] describe various causes of skew
and suggest some practices for avoiding its negative impact.
Ekanayake et al. [26] recognized skew in bioinformatics
applications and analyzed its influence on scheduling mech-
anisms. Finally, Lin [20] illustrates the Zipfian distribution
of intermediate output and proposes a theoretical model that
shows how such distributions can impose a fundamental
limit on extracting parallelism.



VIII. CONCLUDING REMARKS AND FUTURE
DIRECTIONS

In this work, we have observed that the network load is
of special concern with MapReduce as a large amount of
traffic can be generated during the shuffle phase, poten-
tially causing performance deterioration. We realized that
scheduling reduce tasks at their center-of-gravity nodes has
a positive effect on Hadoop’s network traffic as well as
performance. Specifically, average reductions of 9.6% and
38.6% of off-rack network traffic have been accomplished on
a private cloud and on an Amazon EC2 cluster, respectively.
This provided Hadoop a performance improvement of up to
23.8%.

After verifying the promise of CoGRS, we set forth
two main future directions. First, our suggested pseudo-
asynchronous strategy can be altered to involve dynamic
rather than static determination of sweet spots. Finally, we
expect CoGRS to play a role in MapReduce for the type of
scientific applications examined in [18], [26].
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